基于通用肌肉骨骼模型,比较无约束和有约束关节的在线连续运动解码。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lizhi Pan, Zhongyi Ding, Haifeng Zhao, Ruinan Mu, Jianmin Li
{"title":"基于通用肌肉骨骼模型,比较无约束和有约束关节的在线连续运动解码。","authors":"Lizhi Pan, Zhongyi Ding, Haifeng Zhao, Ruinan Mu, Jianmin Li","doi":"10.1007/s11517-024-03207-8","DOIUrl":null,"url":null,"abstract":"<p><p>Human-machine interface (HMI) has been extensively developed and applied in rehabilitation. However, the performance of amputees on continuous movement decoding was significantly decreased compared with that of able-bodied individuals. To explore the impact of the absence of joint movements on the performance of HMI in rehabilitation, a generic musculoskeletal model (MM) was employed in this study to evaluate and compare the performance of subjects completing a series of on-line tasks with the wrist and metacarpophalangeal (MCP) joints unconstrained and constrained. The performance of the generic MM has been demonstrated in previous studies. The electromyography (EMG) signals of four muscles were employed as inputs of the generic MM to realize the continuous movement decoding of wrist and MCP joints. Ten able-bodied subjects were recruited to perform the on-line tasks. The completion time, the number of overshoots, and the path efficiency of the tasks were taken as the indexes to quantify the subjects' performance. The muscle activation associated with the movement was analyzed. Across all tasks and subjects, the average values of the three indexes with the joints unconstrained were 7.7 s, 0.59, and 0.38, respectively, while those with the joints constrained were 17.86 s, 1.47, and 0.22, respectively. The results demonstrated that the subjects performed better with the wrist and MCP joints unconstrained than with those joints constrained in the on-line tasks, suggesting that the absence of joint movements can be a reason of the decreased performance of continuous movement decoding with HMIs. Meanwhile, it is revealed that the different performance on motion behaviors is caused by the absence of joint movements.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing on-line continuous movement decoding with joints unconstrained and constrained based on a generic musculoskeletal model.\",\"authors\":\"Lizhi Pan, Zhongyi Ding, Haifeng Zhao, Ruinan Mu, Jianmin Li\",\"doi\":\"10.1007/s11517-024-03207-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human-machine interface (HMI) has been extensively developed and applied in rehabilitation. However, the performance of amputees on continuous movement decoding was significantly decreased compared with that of able-bodied individuals. To explore the impact of the absence of joint movements on the performance of HMI in rehabilitation, a generic musculoskeletal model (MM) was employed in this study to evaluate and compare the performance of subjects completing a series of on-line tasks with the wrist and metacarpophalangeal (MCP) joints unconstrained and constrained. The performance of the generic MM has been demonstrated in previous studies. The electromyography (EMG) signals of four muscles were employed as inputs of the generic MM to realize the continuous movement decoding of wrist and MCP joints. Ten able-bodied subjects were recruited to perform the on-line tasks. The completion time, the number of overshoots, and the path efficiency of the tasks were taken as the indexes to quantify the subjects' performance. The muscle activation associated with the movement was analyzed. Across all tasks and subjects, the average values of the three indexes with the joints unconstrained were 7.7 s, 0.59, and 0.38, respectively, while those with the joints constrained were 17.86 s, 1.47, and 0.22, respectively. The results demonstrated that the subjects performed better with the wrist and MCP joints unconstrained than with those joints constrained in the on-line tasks, suggesting that the absence of joint movements can be a reason of the decreased performance of continuous movement decoding with HMIs. Meanwhile, it is revealed that the different performance on motion behaviors is caused by the absence of joint movements.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03207-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03207-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

人机界面(HMI)已在康复领域得到广泛开发和应用。然而,与健全人相比,截肢者在连续运动解码方面的表现明显下降。为了探索关节运动缺失对康复人机界面性能的影响,本研究采用了通用肌肉骨骼模型(MM)来评估和比较受试者在腕关节和掌指关节(MCP)无约束和受约束的情况下完成一系列在线任务的性能。通用 MM 的性能已在之前的研究中得到证实。通用 MM 采用四块肌肉的肌电图(EMG)信号作为输入,以实现腕关节和掌指关节的连续运动解码。研究人员招募了 10 名健全的受试者完成在线任务。任务的完成时间、过冲次数和路径效率作为量化受试者表现的指标。对与动作相关的肌肉激活进行了分析。在所有任务和受试者中,关节未受约束时,这三项指标的平均值分别为 7.7 秒、0.59 和 0.38,而关节受约束时,这三项指标的平均值分别为 17.86 秒、1.47 和 0.22。结果表明,在联机任务中,受试者在腕关节和 MCP 关节未受约束的情况下比关节受约束的情况下表现更好,这表明关节运动的缺失可能是人机界面连续运动解码性能下降的一个原因。同时,研究还揭示了运动行为上的不同表现是由关节运动的缺失造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing on-line continuous movement decoding with joints unconstrained and constrained based on a generic musculoskeletal model.

Human-machine interface (HMI) has been extensively developed and applied in rehabilitation. However, the performance of amputees on continuous movement decoding was significantly decreased compared with that of able-bodied individuals. To explore the impact of the absence of joint movements on the performance of HMI in rehabilitation, a generic musculoskeletal model (MM) was employed in this study to evaluate and compare the performance of subjects completing a series of on-line tasks with the wrist and metacarpophalangeal (MCP) joints unconstrained and constrained. The performance of the generic MM has been demonstrated in previous studies. The electromyography (EMG) signals of four muscles were employed as inputs of the generic MM to realize the continuous movement decoding of wrist and MCP joints. Ten able-bodied subjects were recruited to perform the on-line tasks. The completion time, the number of overshoots, and the path efficiency of the tasks were taken as the indexes to quantify the subjects' performance. The muscle activation associated with the movement was analyzed. Across all tasks and subjects, the average values of the three indexes with the joints unconstrained were 7.7 s, 0.59, and 0.38, respectively, while those with the joints constrained were 17.86 s, 1.47, and 0.22, respectively. The results demonstrated that the subjects performed better with the wrist and MCP joints unconstrained than with those joints constrained in the on-line tasks, suggesting that the absence of joint movements can be a reason of the decreased performance of continuous movement decoding with HMIs. Meanwhile, it is revealed that the different performance on motion behaviors is caused by the absence of joint movements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信