{"title":"为放射治疗规划建立硅胶乳房植入物模型。","authors":"Joshua Kirby, Nick West","doi":"10.1016/j.meddos.2024.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>There has been no published work characterizing the attenuation of silicone breast implants in MV energy photon beams. As a result of systematic out of tolerance in-vivo dosimetry results, this report investigates whether the CT Hounsfield Units to electron density curve provides an accurate estimate of attenuation in silicone implants. A CT scan of a silicone breast implant centered on top of WT1 blocks was acquired with simple 6 MV and 10 MV plans created. Dose was calculated using the CT and a collapsed cone algorithm. The predicted dose was compared to doses measured with ionization chamber at 2 points downstream of the implant. Predicted dose from the treatment planning system was 0.9-1.7% lower than measured. The use of a density override on the implant of water (1 g/cm<sup>3</sup>) improved agreement to less than 1% for all energies and measurement depths. We conclude that the use of CT Hounsfield Units for silicone breast implants leads to an under-estimation of dose in MV photon fields. Dose accuracy has been shown to be improved in the treatment planning system when silicone breast implants have a density override of water.</p>","PeriodicalId":49837,"journal":{"name":"Medical Dosimetry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of silicone breast implants for radiotherapy treatment planning.\",\"authors\":\"Joshua Kirby, Nick West\",\"doi\":\"10.1016/j.meddos.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There has been no published work characterizing the attenuation of silicone breast implants in MV energy photon beams. As a result of systematic out of tolerance in-vivo dosimetry results, this report investigates whether the CT Hounsfield Units to electron density curve provides an accurate estimate of attenuation in silicone implants. A CT scan of a silicone breast implant centered on top of WT1 blocks was acquired with simple 6 MV and 10 MV plans created. Dose was calculated using the CT and a collapsed cone algorithm. The predicted dose was compared to doses measured with ionization chamber at 2 points downstream of the implant. Predicted dose from the treatment planning system was 0.9-1.7% lower than measured. The use of a density override on the implant of water (1 g/cm<sup>3</sup>) improved agreement to less than 1% for all energies and measurement depths. We conclude that the use of CT Hounsfield Units for silicone breast implants leads to an under-estimation of dose in MV photon fields. Dose accuracy has been shown to be improved in the treatment planning system when silicone breast implants have a density override of water.</p>\",\"PeriodicalId\":49837,\"journal\":{\"name\":\"Medical Dosimetry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Dosimetry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.meddos.2024.09.004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Dosimetry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.meddos.2024.09.004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Modelling of silicone breast implants for radiotherapy treatment planning.
There has been no published work characterizing the attenuation of silicone breast implants in MV energy photon beams. As a result of systematic out of tolerance in-vivo dosimetry results, this report investigates whether the CT Hounsfield Units to electron density curve provides an accurate estimate of attenuation in silicone implants. A CT scan of a silicone breast implant centered on top of WT1 blocks was acquired with simple 6 MV and 10 MV plans created. Dose was calculated using the CT and a collapsed cone algorithm. The predicted dose was compared to doses measured with ionization chamber at 2 points downstream of the implant. Predicted dose from the treatment planning system was 0.9-1.7% lower than measured. The use of a density override on the implant of water (1 g/cm3) improved agreement to less than 1% for all energies and measurement depths. We conclude that the use of CT Hounsfield Units for silicone breast implants leads to an under-estimation of dose in MV photon fields. Dose accuracy has been shown to be improved in the treatment planning system when silicone breast implants have a density override of water.
期刊介绍:
Medical Dosimetry, the official journal of the American Association of Medical Dosimetrists, is the key source of information on new developments for the medical dosimetrist. Practical and comprehensive in coverage, the journal features original contributions and review articles by medical dosimetrists, oncologists, physicists, and radiation therapy technologists on clinical applications and techniques of external beam, interstitial, intracavitary and intraluminal irradiation in cancer management. Articles dealing primarily with physics will be reviewed by a specially appointed team of experts in the field.