利用 DNA 甲基化特征区分高级别浆液性卵巢癌和良性卵巢肿瘤

IF 4.1 3区 医学 Q1 GENETICS & HEREDITY
Molecular Diagnosis & Therapy Pub Date : 2024-11-01 Epub Date: 2024-10-16 DOI:10.1007/s40291-024-00740-y
Douglas V N P Oliveira, Edyta Biskup, Colm J O'Rourke, Julie L Hentze, Jesper B Andersen, Claus Høgdall, Estrid V Høgdall
{"title":"利用 DNA 甲基化特征区分高级别浆液性卵巢癌和良性卵巢肿瘤","authors":"Douglas V N P Oliveira, Edyta Biskup, Colm J O'Rourke, Julie L Hentze, Jesper B Andersen, Claus Høgdall, Estrid V Høgdall","doi":"10.1007/s40291-024-00740-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Epithelial ovarian cancer (EOC) represents a significant health challenge, with high-grade serous ovarian cancer (HGSOC) being the most common subtype. Early detection is hindered by nonspecific symptoms, leading to late-stage diagnoses and poor survival rates. Biomarkers are crucial for early diagnosis and personalized treatment OBJECTIVE: Our goal was to develop a robust statistical procedure to identify a set of differentially methylated probes (DMPs) that would allow differentiation between HGSOC and benign ovarian tumors.</p><p><strong>Methodology: </strong>Using the Infinium EPIC Methylation array, we analyzed the methylation profiles of 48 ovarian samples diagnosed with HGSOC, borderline ovarian tumors, or benign ovarian disease. Through a multi-step statistical procedure combining univariate and multivariate logistic regression models, we aimed to identify CpG sites of interest.</p><p><strong>Results and conclusions: </strong>We discovered 21 DMPs and developed a predictive model validated in two independent cohorts. Our model, using a distance-to-centroid approach, accurately distinguished between benign and malignant disease. This model can potentially be used in other types of sample material. Moreover, the strategy of the model development and validation can also be used in other disease contexts for diagnostic purposes.</p>","PeriodicalId":49797,"journal":{"name":"Molecular Diagnosis & Therapy","volume":" ","pages":"821-834"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512855/pdf/","citationCount":"0","resultStr":"{\"title\":\"Developing a DNA Methylation Signature to Differentiate High-Grade Serous Ovarian Carcinomas from Benign Ovarian Tumors.\",\"authors\":\"Douglas V N P Oliveira, Edyta Biskup, Colm J O'Rourke, Julie L Hentze, Jesper B Andersen, Claus Høgdall, Estrid V Høgdall\",\"doi\":\"10.1007/s40291-024-00740-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Epithelial ovarian cancer (EOC) represents a significant health challenge, with high-grade serous ovarian cancer (HGSOC) being the most common subtype. Early detection is hindered by nonspecific symptoms, leading to late-stage diagnoses and poor survival rates. Biomarkers are crucial for early diagnosis and personalized treatment OBJECTIVE: Our goal was to develop a robust statistical procedure to identify a set of differentially methylated probes (DMPs) that would allow differentiation between HGSOC and benign ovarian tumors.</p><p><strong>Methodology: </strong>Using the Infinium EPIC Methylation array, we analyzed the methylation profiles of 48 ovarian samples diagnosed with HGSOC, borderline ovarian tumors, or benign ovarian disease. Through a multi-step statistical procedure combining univariate and multivariate logistic regression models, we aimed to identify CpG sites of interest.</p><p><strong>Results and conclusions: </strong>We discovered 21 DMPs and developed a predictive model validated in two independent cohorts. Our model, using a distance-to-centroid approach, accurately distinguished between benign and malignant disease. This model can potentially be used in other types of sample material. Moreover, the strategy of the model development and validation can also be used in other disease contexts for diagnostic purposes.</p>\",\"PeriodicalId\":49797,\"journal\":{\"name\":\"Molecular Diagnosis & Therapy\",\"volume\":\" \",\"pages\":\"821-834\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512855/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diagnosis & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40291-024-00740-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diagnosis & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40291-024-00740-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

简介上皮性卵巢癌(EOC)是一项重大的健康挑战,其中高分化浆液性卵巢癌(HGSOC)是最常见的亚型。非特异性症状阻碍了早期检测,导致诊断晚期和生存率低。生物标志物对早期诊断和个性化治疗至关重要 目标:我们的目标是开发一种稳健的统计程序,以确定一组差异甲基化探针(DMPs),从而区分 HGSOC 和良性卵巢肿瘤:利用 Infinium EPIC 甲基化阵列,我们分析了 48 例被诊断为 HGSOC、边缘性卵巢肿瘤或良性卵巢疾病的卵巢样本的甲基化图谱。通过结合单变量和多变量逻辑回归模型的多步骤统计程序,我们旨在确定感兴趣的 CpG 位点:我们发现了 21 个 DMPs,并建立了一个在两个独立队列中得到验证的预测模型。我们的模型采用距离到中心的方法,能准确区分良性和恶性疾病。该模型可用于其他类型的样本材料。此外,该模型的开发和验证策略也可用于其他疾病的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a DNA Methylation Signature to Differentiate High-Grade Serous Ovarian Carcinomas from Benign Ovarian Tumors.

Introduction: Epithelial ovarian cancer (EOC) represents a significant health challenge, with high-grade serous ovarian cancer (HGSOC) being the most common subtype. Early detection is hindered by nonspecific symptoms, leading to late-stage diagnoses and poor survival rates. Biomarkers are crucial for early diagnosis and personalized treatment OBJECTIVE: Our goal was to develop a robust statistical procedure to identify a set of differentially methylated probes (DMPs) that would allow differentiation between HGSOC and benign ovarian tumors.

Methodology: Using the Infinium EPIC Methylation array, we analyzed the methylation profiles of 48 ovarian samples diagnosed with HGSOC, borderline ovarian tumors, or benign ovarian disease. Through a multi-step statistical procedure combining univariate and multivariate logistic regression models, we aimed to identify CpG sites of interest.

Results and conclusions: We discovered 21 DMPs and developed a predictive model validated in two independent cohorts. Our model, using a distance-to-centroid approach, accurately distinguished between benign and malignant disease. This model can potentially be used in other types of sample material. Moreover, the strategy of the model development and validation can also be used in other disease contexts for diagnostic purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
2.50%
发文量
53
审稿时长
>12 weeks
期刊介绍: Molecular Diagnosis & Therapy welcomes current opinion articles on emerging or contentious issues, comprehensive narrative reviews, systematic reviews (as outlined by the PRISMA statement), original research articles (including short communications) and letters to the editor. All manuscripts are subject to peer review by international experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信