Zhao Huang, Cuiying Kong, WenBo Zhang, Jianyi You, Chenyang Gao, Jiangnan Yi, Zhanzhuo Mai, Xiongnan Chen, Pei Zhou, Lang Gong, Guihong Zhang, Heng Wang
{"title":"pK205R 以 IFN-I 信号通路的近端元件为靶标,帮助非洲猪瘟病毒在感染早期逃避宿主的先天免疫。","authors":"Zhao Huang, Cuiying Kong, WenBo Zhang, Jianyi You, Chenyang Gao, Jiangnan Yi, Zhanzhuo Mai, Xiongnan Chen, Pei Zhou, Lang Gong, Guihong Zhang, Heng Wang","doi":"10.1371/journal.ppat.1012613","DOIUrl":null,"url":null,"abstract":"<p><p>African swine fever virus (ASFV) is a nuclear cytoplasmic large DNA virus (NCLDV) that causes devastating hemorrhagic diseases in domestic pigs and wild boars, seriously threatening the development of the global pig industry. IFN-I plays an important role in the body's antiviral response. Similar to other DNA viruses, ASFV has evolved a variety of immune escape strategies to antagonize IFN-I signaling and maintain its proliferation. In this study, we showed that the ASFV early protein pK205R strongly inhibited interferon-stimulated genes (ISGs) as well as the promoter activity of IFN-stimulated regulatory elements (ISREs). Mechanistically, pK205R interacted with the intracellular domains of IFNAR1 and IFNAR2, thereby inhibiting the interaction of IFNAR1/2 with JAK1 and TYK2 and hindering the phosphorylation and nuclear translocation of STATs. Subsequently, we generated a recombinant strain of the ASFV-pK205R point mutation, ASFV-pK205R7PM. Notably, we detected higher levels of ISGs in porcine alveolar macrophages (PAMs) than in the parental strain during the early stages of ASFV-pK205R7PM infection. Moreover, ASFV-pK205R7PM attenuated the inhibitory effect on IFN-I signaling. In conclusion, we identified a new ASFV immunosuppressive protein that increases our understanding of ASFV immune escape mechanisms.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508493/pdf/","citationCount":"0","resultStr":"{\"title\":\"pK205R targets the proximal element of IFN-I signaling pathway to assist African swine fever virus to escape host innate immunity at the early stage of infection.\",\"authors\":\"Zhao Huang, Cuiying Kong, WenBo Zhang, Jianyi You, Chenyang Gao, Jiangnan Yi, Zhanzhuo Mai, Xiongnan Chen, Pei Zhou, Lang Gong, Guihong Zhang, Heng Wang\",\"doi\":\"10.1371/journal.ppat.1012613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African swine fever virus (ASFV) is a nuclear cytoplasmic large DNA virus (NCLDV) that causes devastating hemorrhagic diseases in domestic pigs and wild boars, seriously threatening the development of the global pig industry. IFN-I plays an important role in the body's antiviral response. Similar to other DNA viruses, ASFV has evolved a variety of immune escape strategies to antagonize IFN-I signaling and maintain its proliferation. In this study, we showed that the ASFV early protein pK205R strongly inhibited interferon-stimulated genes (ISGs) as well as the promoter activity of IFN-stimulated regulatory elements (ISREs). Mechanistically, pK205R interacted with the intracellular domains of IFNAR1 and IFNAR2, thereby inhibiting the interaction of IFNAR1/2 with JAK1 and TYK2 and hindering the phosphorylation and nuclear translocation of STATs. Subsequently, we generated a recombinant strain of the ASFV-pK205R point mutation, ASFV-pK205R7PM. Notably, we detected higher levels of ISGs in porcine alveolar macrophages (PAMs) than in the parental strain during the early stages of ASFV-pK205R7PM infection. Moreover, ASFV-pK205R7PM attenuated the inhibitory effect on IFN-I signaling. In conclusion, we identified a new ASFV immunosuppressive protein that increases our understanding of ASFV immune escape mechanisms.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012613\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012613","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
pK205R targets the proximal element of IFN-I signaling pathway to assist African swine fever virus to escape host innate immunity at the early stage of infection.
African swine fever virus (ASFV) is a nuclear cytoplasmic large DNA virus (NCLDV) that causes devastating hemorrhagic diseases in domestic pigs and wild boars, seriously threatening the development of the global pig industry. IFN-I plays an important role in the body's antiviral response. Similar to other DNA viruses, ASFV has evolved a variety of immune escape strategies to antagonize IFN-I signaling and maintain its proliferation. In this study, we showed that the ASFV early protein pK205R strongly inhibited interferon-stimulated genes (ISGs) as well as the promoter activity of IFN-stimulated regulatory elements (ISREs). Mechanistically, pK205R interacted with the intracellular domains of IFNAR1 and IFNAR2, thereby inhibiting the interaction of IFNAR1/2 with JAK1 and TYK2 and hindering the phosphorylation and nuclear translocation of STATs. Subsequently, we generated a recombinant strain of the ASFV-pK205R point mutation, ASFV-pK205R7PM. Notably, we detected higher levels of ISGs in porcine alveolar macrophages (PAMs) than in the parental strain during the early stages of ASFV-pK205R7PM infection. Moreover, ASFV-pK205R7PM attenuated the inhibitory effect on IFN-I signaling. In conclusion, we identified a new ASFV immunosuppressive protein that increases our understanding of ASFV immune escape mechanisms.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.