Chao Sun, Boning Zeng, Jilong Zhou, Nan Li, Mingwei Li, Chaowei Zhu, Shouxia Xie, Yifei Wang, Shaoxiang Wang, Xiao Wang
{"title":"对 SLC 基因替代剪接的分析发现,SLC7A6 RI 异构体是结直肠癌的治疗靶点。","authors":"Chao Sun, Boning Zeng, Jilong Zhou, Nan Li, Mingwei Li, Chaowei Zhu, Shouxia Xie, Yifei Wang, Shaoxiang Wang, Xiao Wang","doi":"10.1111/cas.16351","DOIUrl":null,"url":null,"abstract":"<p><p>Alternative splicing (AS), a crucial mechanism in post-transcriptional regulation, has been implicated in diverse cancer processes. Several splicing variants of solute carrier (SLC) transporters reportedly play pivotal roles in tumorigenesis and tumor development. However, an in-depth analysis of AS landscapes of SLCs in colon adenocarcinoma (COAD) is lacking. Herein, we analyzed data from The Cancer Genome Atlas and identified 1215 AS events across 243 SLC genes, including 109 differentially expressed AS (DEAS) events involving 62 SLC genes in COAD. Differentially spliced SLCs were enriched in biological processes, including transmembrane transporter activity, transporter activity, ferroptosis, and choline metabolism. In patients with COAD, tumor tissues exhibited higher expression of longer mitochondrial carrier SLC25A16 isoforms than adjacent normal tissues, consistent with bioinformatics analysis. Protein-coding sequences and transmembrane helices of survival-related DEAS were predicted, revealing that shifts in splicing sites altered the number and structure of their transmembrane proteins. We developed a prognostic risk model based on the screened 6-SLC-AS (SLC7A6_RI_37208 (SLC7A6-RI), SLC11A2_AP_21724, SLC2A8_ES_87631, SLC35B1_AA_42317, SLC39A11_AD_43204, and SLC7A8_AP_26712). Knockdown of the intronic region of SLC7A6-RI isoform enhanced colon cancer cell proliferation. In vivo, knockdown of the intronic region of SLC7A6-RI isoform enhanced tumor growth in colon cancer. Mechanistically, si-SLC7A6-RI isoform exerted oncogenic effects by activating the PI3K-Akt-mTOR signaling pathway and promoting cell proliferation, evidenced by increased expression of key regulators Phosphorylated Mammalian Target of Rapamycin (p-mTOR) and a cell proliferation marker Proliferating Cell Nuclear Antigen (PCNA) using western blotting. Our study elucidated SLC-AS in COAD, highlighting its potential as a prognostic and therapeutic target and emphasizing the suppressive influence of SLC7A6-RI in colon cancer progression.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of SLC genes alternative splicing identifies the SLC7A6 RI isoform as a therapeutic target for colorectal cancer.\",\"authors\":\"Chao Sun, Boning Zeng, Jilong Zhou, Nan Li, Mingwei Li, Chaowei Zhu, Shouxia Xie, Yifei Wang, Shaoxiang Wang, Xiao Wang\",\"doi\":\"10.1111/cas.16351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alternative splicing (AS), a crucial mechanism in post-transcriptional regulation, has been implicated in diverse cancer processes. Several splicing variants of solute carrier (SLC) transporters reportedly play pivotal roles in tumorigenesis and tumor development. However, an in-depth analysis of AS landscapes of SLCs in colon adenocarcinoma (COAD) is lacking. Herein, we analyzed data from The Cancer Genome Atlas and identified 1215 AS events across 243 SLC genes, including 109 differentially expressed AS (DEAS) events involving 62 SLC genes in COAD. Differentially spliced SLCs were enriched in biological processes, including transmembrane transporter activity, transporter activity, ferroptosis, and choline metabolism. In patients with COAD, tumor tissues exhibited higher expression of longer mitochondrial carrier SLC25A16 isoforms than adjacent normal tissues, consistent with bioinformatics analysis. Protein-coding sequences and transmembrane helices of survival-related DEAS were predicted, revealing that shifts in splicing sites altered the number and structure of their transmembrane proteins. We developed a prognostic risk model based on the screened 6-SLC-AS (SLC7A6_RI_37208 (SLC7A6-RI), SLC11A2_AP_21724, SLC2A8_ES_87631, SLC35B1_AA_42317, SLC39A11_AD_43204, and SLC7A8_AP_26712). Knockdown of the intronic region of SLC7A6-RI isoform enhanced colon cancer cell proliferation. In vivo, knockdown of the intronic region of SLC7A6-RI isoform enhanced tumor growth in colon cancer. Mechanistically, si-SLC7A6-RI isoform exerted oncogenic effects by activating the PI3K-Akt-mTOR signaling pathway and promoting cell proliferation, evidenced by increased expression of key regulators Phosphorylated Mammalian Target of Rapamycin (p-mTOR) and a cell proliferation marker Proliferating Cell Nuclear Antigen (PCNA) using western blotting. Our study elucidated SLC-AS in COAD, highlighting its potential as a prognostic and therapeutic target and emphasizing the suppressive influence of SLC7A6-RI in colon cancer progression.</p>\",\"PeriodicalId\":48943,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/cas.16351\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.16351","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Analysis of SLC genes alternative splicing identifies the SLC7A6 RI isoform as a therapeutic target for colorectal cancer.
Alternative splicing (AS), a crucial mechanism in post-transcriptional regulation, has been implicated in diverse cancer processes. Several splicing variants of solute carrier (SLC) transporters reportedly play pivotal roles in tumorigenesis and tumor development. However, an in-depth analysis of AS landscapes of SLCs in colon adenocarcinoma (COAD) is lacking. Herein, we analyzed data from The Cancer Genome Atlas and identified 1215 AS events across 243 SLC genes, including 109 differentially expressed AS (DEAS) events involving 62 SLC genes in COAD. Differentially spliced SLCs were enriched in biological processes, including transmembrane transporter activity, transporter activity, ferroptosis, and choline metabolism. In patients with COAD, tumor tissues exhibited higher expression of longer mitochondrial carrier SLC25A16 isoforms than adjacent normal tissues, consistent with bioinformatics analysis. Protein-coding sequences and transmembrane helices of survival-related DEAS were predicted, revealing that shifts in splicing sites altered the number and structure of their transmembrane proteins. We developed a prognostic risk model based on the screened 6-SLC-AS (SLC7A6_RI_37208 (SLC7A6-RI), SLC11A2_AP_21724, SLC2A8_ES_87631, SLC35B1_AA_42317, SLC39A11_AD_43204, and SLC7A8_AP_26712). Knockdown of the intronic region of SLC7A6-RI isoform enhanced colon cancer cell proliferation. In vivo, knockdown of the intronic region of SLC7A6-RI isoform enhanced tumor growth in colon cancer. Mechanistically, si-SLC7A6-RI isoform exerted oncogenic effects by activating the PI3K-Akt-mTOR signaling pathway and promoting cell proliferation, evidenced by increased expression of key regulators Phosphorylated Mammalian Target of Rapamycin (p-mTOR) and a cell proliferation marker Proliferating Cell Nuclear Antigen (PCNA) using western blotting. Our study elucidated SLC-AS in COAD, highlighting its potential as a prognostic and therapeutic target and emphasizing the suppressive influence of SLC7A6-RI in colon cancer progression.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.