Candice L Young, Annabel C Beichman, David Mas-Ponte, Shelby L Hemker, Luke Zhu, Jacob O Kitzman, Brian H Shirts, Kelley Harris
{"title":"一个受遗传性结直肠癌影响的家族中的母系生殖突变表型。","authors":"Candice L Young, Annabel C Beichman, David Mas-Ponte, Shelby L Hemker, Luke Zhu, Jacob O Kitzman, Brian H Shirts, Kelley Harris","doi":"10.1093/genetics/iyae166","DOIUrl":null,"url":null,"abstract":"<p><p>Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner. Recent evidence has also linked MUTYH to a mutator phenotype affecting normal somatic cells as well as the female germline. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family containing both mothers and fathers who are affected by pathogenic MUTYH variation. By developing novel methodology that uses siblings as \"surrogate parents\" to identify de novo mutations, we were able to include mutation data from several children whose parents were unavailable for sequencing. In the children of mothers affected by the pathogenic MUTYH genotype p.Y179C/V234M, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same MUTYH genotype, and we similarly find that the mutator effect of the mouse homolog Mutyh appears to be localized to embryonic development, not the spermatocytes. Our results suggest that maternal MUTYH variants can cause germline mutations by attenuating the repair of oxidative DNA damage in the early embryo.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A maternal germline mutator phenotype in a family affected by heritable colorectal cancer.\",\"authors\":\"Candice L Young, Annabel C Beichman, David Mas-Ponte, Shelby L Hemker, Luke Zhu, Jacob O Kitzman, Brian H Shirts, Kelley Harris\",\"doi\":\"10.1093/genetics/iyae166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner. Recent evidence has also linked MUTYH to a mutator phenotype affecting normal somatic cells as well as the female germline. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family containing both mothers and fathers who are affected by pathogenic MUTYH variation. By developing novel methodology that uses siblings as \\\"surrogate parents\\\" to identify de novo mutations, we were able to include mutation data from several children whose parents were unavailable for sequencing. In the children of mothers affected by the pathogenic MUTYH genotype p.Y179C/V234M, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same MUTYH genotype, and we similarly find that the mutator effect of the mouse homolog Mutyh appears to be localized to embryonic development, not the spermatocytes. Our results suggest that maternal MUTYH variants can cause germline mutations by attenuating the repair of oxidative DNA damage in the early embryo.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae166\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae166","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A maternal germline mutator phenotype in a family affected by heritable colorectal cancer.
Variation in DNA repair genes can increase cancer risk by elevating the rate of oncogenic mutation. Defects in one such gene, MUTYH, are known to elevate the incidence of colorectal cancer in a recessive Mendelian manner. Recent evidence has also linked MUTYH to a mutator phenotype affecting normal somatic cells as well as the female germline. Here, we use whole genome sequencing to measure germline de novo mutation rates in a large extended family containing both mothers and fathers who are affected by pathogenic MUTYH variation. By developing novel methodology that uses siblings as "surrogate parents" to identify de novo mutations, we were able to include mutation data from several children whose parents were unavailable for sequencing. In the children of mothers affected by the pathogenic MUTYH genotype p.Y179C/V234M, we identify an elevation of the C>A mutation rate that is weaker than mutator effects previously reported to be caused by other pathogenic MUTYH genotypes, suggesting that mutation rates in normal tissues may be useful for classifying cancer-associated variation along a continuum of severity. Surprisingly, we detect no significant elevation of the C>A mutation rate in children born to a father with the same MUTYH genotype, and we similarly find that the mutator effect of the mouse homolog Mutyh appears to be localized to embryonic development, not the spermatocytes. Our results suggest that maternal MUTYH variants can cause germline mutations by attenuating the repair of oxidative DNA damage in the early embryo.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.