Saúl J C Salazar, Humberto G Laguna, Robin P Sagar
{"title":"N 粒子量子系统中的互信息总和及其与相互作用能量的关系。","authors":"Saúl J C Salazar, Humberto G Laguna, Robin P Sagar","doi":"10.1103/PhysRevE.110.034133","DOIUrl":null,"url":null,"abstract":"<p><p>The sums of position- and momentum-space mutual information measures are used to examine the pairwise and higher-order statistical correlation in the ground states of N-particle coupled oscillators. Analytical expressions for these measures are shown to be related to the logarithmic interaction energies of these states, plus those of mirror states where the intensities of the one- and two-body potentials are interchanged, and the nature of the attractive or repulsive interaction is opposite to that in the original state. The measures separate the contributions from the interactions and those from the effective interactions due to marginalization into different terms. The pairwise mutual information sum is linearly related to the Shannon entropy sum in two particle systems, while the total correlation sum exhibits a similar relationship in three particle ones. In the latter instance, the interaction information sum can be related to entropy differences. This illustrates how entropy sums are connected to correlation measure sums in these systems. All measures approach zero with large N, when the magnitudes of the one- and two-body potentials are fixed. The pair mutual information and total correlation sums decay monotonically with N in the presence of an attractive potential and monotonically increase with a repulsive potential. On the other hand, the interaction information sum exhibits a minimum at small N, with an attractive potential. This is a consequence of the higher-order correlations governing behavior at smaller N while the pairwise ones dominate at larger N. Results are presented when the magnitude of the one-body potential is set to N.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutual information sums and relations with interaction energies in N-particle quantum systems.\",\"authors\":\"Saúl J C Salazar, Humberto G Laguna, Robin P Sagar\",\"doi\":\"10.1103/PhysRevE.110.034133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sums of position- and momentum-space mutual information measures are used to examine the pairwise and higher-order statistical correlation in the ground states of N-particle coupled oscillators. Analytical expressions for these measures are shown to be related to the logarithmic interaction energies of these states, plus those of mirror states where the intensities of the one- and two-body potentials are interchanged, and the nature of the attractive or repulsive interaction is opposite to that in the original state. The measures separate the contributions from the interactions and those from the effective interactions due to marginalization into different terms. The pairwise mutual information sum is linearly related to the Shannon entropy sum in two particle systems, while the total correlation sum exhibits a similar relationship in three particle ones. In the latter instance, the interaction information sum can be related to entropy differences. This illustrates how entropy sums are connected to correlation measure sums in these systems. All measures approach zero with large N, when the magnitudes of the one- and two-body potentials are fixed. The pair mutual information and total correlation sums decay monotonically with N in the presence of an attractive potential and monotonically increase with a repulsive potential. On the other hand, the interaction information sum exhibits a minimum at small N, with an attractive potential. This is a consequence of the higher-order correlations governing behavior at smaller N while the pairwise ones dominate at larger N. Results are presented when the magnitude of the one-body potential is set to N.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.034133\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.034133","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
位置空间和动量空间互信息量之和被用来检验 N 粒子耦合振荡器基态中的成对和高阶统计相关性。这些量度的分析表达式与这些态的对数相互作用能以及镜像态的对数相互作用能有关,在镜像态中,一体和二体势能的强度互换,吸引力或排斥力相互作用的性质与原始态中的相反。这些测量方法将相互作用的贡献和边际化导致的有效相互作用的贡献分为不同的项。在双粒子系统中,成对互信息总和与香农熵总和呈线性关系,而在三粒子系统中,总相关性总和也呈现出类似的关系。在后一种情况下,交互信息总和与熵差相关。这说明了在这些系统中,熵总和是如何与相关度总和联系在一起的。当一体和二体势能的大小固定时,所有度量都会随着 N 的增大而趋近于零。在存在吸引势的情况下,线对互信息和总相关和随 N 单调衰减,而在存在斥力势的情况下则单调增加。另一方面,在小 N 时,相互作用的信息总和在有吸引力的电势下显示出最小值。这是因为在 N 较小的情况下,高阶相关性起支配作用,而在 N 较大的情况下,成对相关性起支配作用。
Mutual information sums and relations with interaction energies in N-particle quantum systems.
The sums of position- and momentum-space mutual information measures are used to examine the pairwise and higher-order statistical correlation in the ground states of N-particle coupled oscillators. Analytical expressions for these measures are shown to be related to the logarithmic interaction energies of these states, plus those of mirror states where the intensities of the one- and two-body potentials are interchanged, and the nature of the attractive or repulsive interaction is opposite to that in the original state. The measures separate the contributions from the interactions and those from the effective interactions due to marginalization into different terms. The pairwise mutual information sum is linearly related to the Shannon entropy sum in two particle systems, while the total correlation sum exhibits a similar relationship in three particle ones. In the latter instance, the interaction information sum can be related to entropy differences. This illustrates how entropy sums are connected to correlation measure sums in these systems. All measures approach zero with large N, when the magnitudes of the one- and two-body potentials are fixed. The pair mutual information and total correlation sums decay monotonically with N in the presence of an attractive potential and monotonically increase with a repulsive potential. On the other hand, the interaction information sum exhibits a minimum at small N, with an attractive potential. This is a consequence of the higher-order correlations governing behavior at smaller N while the pairwise ones dominate at larger N. Results are presented when the magnitude of the one-body potential is set to N.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.