{"title":"显微镜散射分析中的 Ab initio 不确定性量化。","authors":"Mengyang Gu, Yue He, Xubo Liu, Yimin Luo","doi":"10.1103/PhysRevE.110.034601","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a loss function between a model and observed statistics. In scattering-based analysis, it is common to work in the reciprocal space. Researchers often employ their domain expertise to select a specific range of wave vectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty for parameter estimation, termed the ab initio uncertainty quantification (AIUQ). As an illustrative example, we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information through minimizing a loss function for the squared differences of the Fourier-transformed intensities, at a selected range of wave vectors. We first show that the conventional way of estimation in DDM is equivalent to fitting a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we derive the maximum marginal likelihood estimator, which optimally weighs the information at all wave vectors, therefore eliminating the need to select the range of wave vectors. Furthermore, we substantially reduce the computational cost of computing the likelihood function without approximation, by utilizing the generalized Schur algorithm for Toeplitz covariances. Simulated studies of a wide range of dynamical systems validate that the AIUQ method improves estimation accuracy and enables model selection with automated analysis. The utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid, pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning anisotropic diffusive behavior of colloids in a liquid crystal. These studies demonstrate that the new approach does not require manually selecting the wave vector range and enables automated analysis.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio uncertainty quantification in scattering analysis of microscopy.\",\"authors\":\"Mengyang Gu, Yue He, Xubo Liu, Yimin Luo\",\"doi\":\"10.1103/PhysRevE.110.034601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a loss function between a model and observed statistics. In scattering-based analysis, it is common to work in the reciprocal space. Researchers often employ their domain expertise to select a specific range of wave vectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty for parameter estimation, termed the ab initio uncertainty quantification (AIUQ). As an illustrative example, we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information through minimizing a loss function for the squared differences of the Fourier-transformed intensities, at a selected range of wave vectors. We first show that the conventional way of estimation in DDM is equivalent to fitting a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we derive the maximum marginal likelihood estimator, which optimally weighs the information at all wave vectors, therefore eliminating the need to select the range of wave vectors. Furthermore, we substantially reduce the computational cost of computing the likelihood function without approximation, by utilizing the generalized Schur algorithm for Toeplitz covariances. Simulated studies of a wide range of dynamical systems validate that the AIUQ method improves estimation accuracy and enables model selection with automated analysis. The utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid, pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning anisotropic diffusive behavior of colloids in a liquid crystal. These studies demonstrate that the new approach does not require manually selecting the wave vector range and enables automated analysis.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.034601\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.034601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Ab initio uncertainty quantification in scattering analysis of microscopy.
Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a loss function between a model and observed statistics. In scattering-based analysis, it is common to work in the reciprocal space. Researchers often employ their domain expertise to select a specific range of wave vectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty for parameter estimation, termed the ab initio uncertainty quantification (AIUQ). As an illustrative example, we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information through minimizing a loss function for the squared differences of the Fourier-transformed intensities, at a selected range of wave vectors. We first show that the conventional way of estimation in DDM is equivalent to fitting a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we derive the maximum marginal likelihood estimator, which optimally weighs the information at all wave vectors, therefore eliminating the need to select the range of wave vectors. Furthermore, we substantially reduce the computational cost of computing the likelihood function without approximation, by utilizing the generalized Schur algorithm for Toeplitz covariances. Simulated studies of a wide range of dynamical systems validate that the AIUQ method improves estimation accuracy and enables model selection with automated analysis. The utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid, pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning anisotropic diffusive behavior of colloids in a liquid crystal. These studies demonstrate that the new approach does not require manually selecting the wave vector range and enables automated analysis.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.