Marcela G Dos Santos, Sylvain Hallé, Fabio Petrillo, Yann-Gaël Guéhéneuc
{"title":"AAT4IRS:工业机器人系统自动验收测试。","authors":"Marcela G Dos Santos, Sylvain Hallé, Fabio Petrillo, Yann-Gaël Guéhéneuc","doi":"10.3389/frobt.2024.1346580","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial robotic systems (IRS) consist of industrial robots that automate industrial processes. They accurately perform repetitive tasks, replacing or assisting with dangerous jobs like assembly in the automotive and chemical industries. Failures in these systems can be catastrophic, so it is important to ensure their quality and safety before using them. One way to do this is by applying a software testing process to find faults before they become failures. However, software testing in industrial robotic systems has some challenges. These include differences in perspectives on software testing from people with diverse backgrounds, coordinating and collaborating with diverse teams, and performing software testing within the complex integration inherent in industrial environments. In traditional systems, a well-known development process uses simple, structured sentences in English to facilitate communication between project team members and business stakeholders. This process is called behavior-driven development (BDD), and one of its pillars is the use of templates to write user stories, scenarios, and automated acceptance tests. We propose a software testing (ST) approach called automated acceptance testing for industrial robotic systems (AAT4IRS) that uses natural language to write the features and scenarios to be tested. We evaluated our ST approach through a proof-of-concept, performing a pick-and-place process and applying mutation testing to measure its effectiveness. The results show that the test suites implemented using AAT4IRS were highly effective, with 79% of the generated mutants detected, thus instilling confidence in the robustness of our approach.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484419/pdf/","citationCount":"0","resultStr":"{\"title\":\"AAT4IRS: automated acceptance testing for industrial robotic systems.\",\"authors\":\"Marcela G Dos Santos, Sylvain Hallé, Fabio Petrillo, Yann-Gaël Guéhéneuc\",\"doi\":\"10.3389/frobt.2024.1346580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Industrial robotic systems (IRS) consist of industrial robots that automate industrial processes. They accurately perform repetitive tasks, replacing or assisting with dangerous jobs like assembly in the automotive and chemical industries. Failures in these systems can be catastrophic, so it is important to ensure their quality and safety before using them. One way to do this is by applying a software testing process to find faults before they become failures. However, software testing in industrial robotic systems has some challenges. These include differences in perspectives on software testing from people with diverse backgrounds, coordinating and collaborating with diverse teams, and performing software testing within the complex integration inherent in industrial environments. In traditional systems, a well-known development process uses simple, structured sentences in English to facilitate communication between project team members and business stakeholders. This process is called behavior-driven development (BDD), and one of its pillars is the use of templates to write user stories, scenarios, and automated acceptance tests. We propose a software testing (ST) approach called automated acceptance testing for industrial robotic systems (AAT4IRS) that uses natural language to write the features and scenarios to be tested. We evaluated our ST approach through a proof-of-concept, performing a pick-and-place process and applying mutation testing to measure its effectiveness. The results show that the test suites implemented using AAT4IRS were highly effective, with 79% of the generated mutants detected, thus instilling confidence in the robustness of our approach.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484419/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2024.1346580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1346580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
摘要
工业机器人系统(IRS)由实现工业流程自动化的工业机器人组成。它们能准确地执行重复性任务,替代或协助汽车和化工行业的装配等危险工作。这些系统的故障可能是灾难性的,因此在使用前必须确保其质量和安全。其中一种方法就是采用软件测试流程,在故障发生之前就将其找出来。然而,工业机器人系统的软件测试也面临一些挑战。其中包括来自不同背景的人员对软件测试的不同看法,与不同团队的协调与合作,以及在工业环境固有的复杂集成中执行软件测试。在传统系统中,一个著名的开发流程是使用简单、结构化的英语句子来促进项目团队成员和业务利益相关者之间的沟通。这一流程被称为行为驱动开发(BDD),其支柱之一是使用模板编写用户故事、场景和自动化验收测试。我们提出了一种名为工业机器人系统自动化验收测试(AAT4IRS)的软件测试(ST)方法,该方法使用自然语言编写要测试的功能和场景。我们通过概念验证评估了我们的 ST 方法,执行了拾取和放置流程,并应用突变测试来衡量其有效性。结果表明,使用 AAT4IRS 实施的测试套件非常有效,79% 的生成突变都被检测到,从而为我们方法的鲁棒性注入了信心。
AAT4IRS: automated acceptance testing for industrial robotic systems.
Industrial robotic systems (IRS) consist of industrial robots that automate industrial processes. They accurately perform repetitive tasks, replacing or assisting with dangerous jobs like assembly in the automotive and chemical industries. Failures in these systems can be catastrophic, so it is important to ensure their quality and safety before using them. One way to do this is by applying a software testing process to find faults before they become failures. However, software testing in industrial robotic systems has some challenges. These include differences in perspectives on software testing from people with diverse backgrounds, coordinating and collaborating with diverse teams, and performing software testing within the complex integration inherent in industrial environments. In traditional systems, a well-known development process uses simple, structured sentences in English to facilitate communication between project team members and business stakeholders. This process is called behavior-driven development (BDD), and one of its pillars is the use of templates to write user stories, scenarios, and automated acceptance tests. We propose a software testing (ST) approach called automated acceptance testing for industrial robotic systems (AAT4IRS) that uses natural language to write the features and scenarios to be tested. We evaluated our ST approach through a proof-of-concept, performing a pick-and-place process and applying mutation testing to measure its effectiveness. The results show that the test suites implemented using AAT4IRS were highly effective, with 79% of the generated mutants detected, thus instilling confidence in the robustness of our approach.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.