结直肠肝转移肝切除术后早期肝外复发的术前识别:机器学习方法

IF 2.3 3区 医学 Q2 SURGERY
Jun Kawashima, Yutaka Endo, Selamawit Woldesenbet, Odysseas P Chatzipanagiotou, Diamantis I Tsilimigras, Giovanni Catalano, Muhammad Muntazir Mehdi Khan, Zayed Rashid, Mujtaba Khalil, Abdullah Altaf, Muhammad Musaab Munir, Alfredo Guglielmi, Andrea Ruzzenente, Luca Aldrighetti, Sorin Alexandrescu, Minoru Kitago, George Poultsides, Kazunari Sasaki, Federico Aucejo, Itaru Endo, Timothy M Pawlik
{"title":"结直肠肝转移肝切除术后早期肝外复发的术前识别:机器学习方法","authors":"Jun Kawashima, Yutaka Endo, Selamawit Woldesenbet, Odysseas P Chatzipanagiotou, Diamantis I Tsilimigras, Giovanni Catalano, Muhammad Muntazir Mehdi Khan, Zayed Rashid, Mujtaba Khalil, Abdullah Altaf, Muhammad Musaab Munir, Alfredo Guglielmi, Andrea Ruzzenente, Luca Aldrighetti, Sorin Alexandrescu, Minoru Kitago, George Poultsides, Kazunari Sasaki, Federico Aucejo, Itaru Endo, Timothy M Pawlik","doi":"10.1002/wjs.12376","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning (ML) may provide novel insights into data patterns and improve model prediction accuracy. The current study sought to develop and validate an ML model to predict early extra-hepatic recurrence (EEHR) among patients undergoing resection of colorectal liver metastasis (CRLM).</p><p><strong>Methods: </strong>Patients with CRLM who underwent curative-intent resection between 2000 and 2020 were identified from an international multi-institutional database. An eXtreme gradient boosting (XGBoost) model was developed to estimate the risk of EEHR, defined as extrahepatic recurrence within 12 months after hepatectomy, using clinicopathological factors. The relative importance of factors was determined using Shapley additive explanations (SHAP) values.</p><p><strong>Results: </strong>Among 1410 patients undergoing curative-intent resection, 131 (9.3%) patients experienced EEHR. Median OS among patients with and without EEHR was 35.4 months (interquartile range [IQR] 29.9-46.7) versus 120.5 months (IQR 97.2-134.0), respectively (p < 0.001). The ML predictive model had c-index values of 0.77 (95% CI, 0.72-0.81) and 0.77 (95% CI, 0.73-0.80) in the entire dataset and the validation data set with bootstrapping resamples, respectively. The SHAP algorithm demonstrated that T and N primary tumor categories, as well as tumor burden score were the three most important predictors of EEHR. An easy-to-use risk calculator for EEHR was developed and made available online at: https://junkawashima.shinyapps.io/EEHR/.</p><p><strong>Conclusions: </strong>An easy-to-use online calculator was developed using ML to help clinicians predict the chance of EEHR after curative-intent resection for CRLM. This tool may help clinicians in decision-making related to treatment strategies for patients with CRLM.</p>","PeriodicalId":23926,"journal":{"name":"World Journal of Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preoperative identification of early extrahepatic recurrence after hepatectomy for colorectal liver metastases: A machine learning approach.\",\"authors\":\"Jun Kawashima, Yutaka Endo, Selamawit Woldesenbet, Odysseas P Chatzipanagiotou, Diamantis I Tsilimigras, Giovanni Catalano, Muhammad Muntazir Mehdi Khan, Zayed Rashid, Mujtaba Khalil, Abdullah Altaf, Muhammad Musaab Munir, Alfredo Guglielmi, Andrea Ruzzenente, Luca Aldrighetti, Sorin Alexandrescu, Minoru Kitago, George Poultsides, Kazunari Sasaki, Federico Aucejo, Itaru Endo, Timothy M Pawlik\",\"doi\":\"10.1002/wjs.12376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Machine learning (ML) may provide novel insights into data patterns and improve model prediction accuracy. The current study sought to develop and validate an ML model to predict early extra-hepatic recurrence (EEHR) among patients undergoing resection of colorectal liver metastasis (CRLM).</p><p><strong>Methods: </strong>Patients with CRLM who underwent curative-intent resection between 2000 and 2020 were identified from an international multi-institutional database. An eXtreme gradient boosting (XGBoost) model was developed to estimate the risk of EEHR, defined as extrahepatic recurrence within 12 months after hepatectomy, using clinicopathological factors. The relative importance of factors was determined using Shapley additive explanations (SHAP) values.</p><p><strong>Results: </strong>Among 1410 patients undergoing curative-intent resection, 131 (9.3%) patients experienced EEHR. Median OS among patients with and without EEHR was 35.4 months (interquartile range [IQR] 29.9-46.7) versus 120.5 months (IQR 97.2-134.0), respectively (p < 0.001). The ML predictive model had c-index values of 0.77 (95% CI, 0.72-0.81) and 0.77 (95% CI, 0.73-0.80) in the entire dataset and the validation data set with bootstrapping resamples, respectively. The SHAP algorithm demonstrated that T and N primary tumor categories, as well as tumor burden score were the three most important predictors of EEHR. An easy-to-use risk calculator for EEHR was developed and made available online at: https://junkawashima.shinyapps.io/EEHR/.</p><p><strong>Conclusions: </strong>An easy-to-use online calculator was developed using ML to help clinicians predict the chance of EEHR after curative-intent resection for CRLM. This tool may help clinicians in decision-making related to treatment strategies for patients with CRLM.</p>\",\"PeriodicalId\":23926,\"journal\":{\"name\":\"World Journal of Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wjs.12376\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wjs.12376","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

背景:机器学习(ML)可提供对数据模式的新见解并提高模型预测的准确性。本研究试图开发并验证一种 ML 模型,用于预测接受结直肠肝转移(CRLM)切除术患者的早期肝外复发(EEHR):从国际多机构数据库中筛选出2000年至2020年间接受治愈性切除术的CRLM患者。利用临床病理因素建立了一个极端梯度提升(XGBoost)模型来估算EEHR(定义为肝切除术后12个月内的肝外复发)的风险。各因素的相对重要性使用沙普利加法解释(SHAP)值确定:结果:在接受治愈性切除术的 1410 例患者中,有 131 例(9.3%)患者经历了 EEHR。有 EEHR 和没有 EEHR 的患者的中位手术时间分别为 35.4 个月(四分位距[IQR] 29.9-46.7)和 120.5 个月(IQR 97.2-134.0)(P利用 ML 开发了一种易于使用的在线计算器,帮助临床医生预测 CRLM 治疗性切除术后发生 EEHR 的几率。该工具可帮助临床医生对 CRLM 患者的治疗策略做出决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preoperative identification of early extrahepatic recurrence after hepatectomy for colorectal liver metastases: A machine learning approach.

Background: Machine learning (ML) may provide novel insights into data patterns and improve model prediction accuracy. The current study sought to develop and validate an ML model to predict early extra-hepatic recurrence (EEHR) among patients undergoing resection of colorectal liver metastasis (CRLM).

Methods: Patients with CRLM who underwent curative-intent resection between 2000 and 2020 were identified from an international multi-institutional database. An eXtreme gradient boosting (XGBoost) model was developed to estimate the risk of EEHR, defined as extrahepatic recurrence within 12 months after hepatectomy, using clinicopathological factors. The relative importance of factors was determined using Shapley additive explanations (SHAP) values.

Results: Among 1410 patients undergoing curative-intent resection, 131 (9.3%) patients experienced EEHR. Median OS among patients with and without EEHR was 35.4 months (interquartile range [IQR] 29.9-46.7) versus 120.5 months (IQR 97.2-134.0), respectively (p < 0.001). The ML predictive model had c-index values of 0.77 (95% CI, 0.72-0.81) and 0.77 (95% CI, 0.73-0.80) in the entire dataset and the validation data set with bootstrapping resamples, respectively. The SHAP algorithm demonstrated that T and N primary tumor categories, as well as tumor burden score were the three most important predictors of EEHR. An easy-to-use risk calculator for EEHR was developed and made available online at: https://junkawashima.shinyapps.io/EEHR/.

Conclusions: An easy-to-use online calculator was developed using ML to help clinicians predict the chance of EEHR after curative-intent resection for CRLM. This tool may help clinicians in decision-making related to treatment strategies for patients with CRLM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Surgery
World Journal of Surgery 医学-外科
CiteScore
5.10
自引率
3.80%
发文量
460
审稿时长
3 months
期刊介绍: World Journal of Surgery is the official publication of the International Society of Surgery/Societe Internationale de Chirurgie (iss-sic.com). Under the editorship of Dr. Julie Ann Sosa, World Journal of Surgery provides an in-depth, international forum for the most authoritative information on major clinical problems in the fields of clinical and experimental surgery, surgical education, and socioeconomic aspects of surgical care. Contributions are reviewed and selected by a group of distinguished surgeons from across the world who make up the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信