Jun Kawashima, Yutaka Endo, Selamawit Woldesenbet, Odysseas P Chatzipanagiotou, Diamantis I Tsilimigras, Giovanni Catalano, Muhammad Muntazir Mehdi Khan, Zayed Rashid, Mujtaba Khalil, Abdullah Altaf, Muhammad Musaab Munir, Alfredo Guglielmi, Andrea Ruzzenente, Luca Aldrighetti, Sorin Alexandrescu, Minoru Kitago, George Poultsides, Kazunari Sasaki, Federico Aucejo, Itaru Endo, Timothy M Pawlik
{"title":"结直肠肝转移肝切除术后早期肝外复发的术前识别:机器学习方法","authors":"Jun Kawashima, Yutaka Endo, Selamawit Woldesenbet, Odysseas P Chatzipanagiotou, Diamantis I Tsilimigras, Giovanni Catalano, Muhammad Muntazir Mehdi Khan, Zayed Rashid, Mujtaba Khalil, Abdullah Altaf, Muhammad Musaab Munir, Alfredo Guglielmi, Andrea Ruzzenente, Luca Aldrighetti, Sorin Alexandrescu, Minoru Kitago, George Poultsides, Kazunari Sasaki, Federico Aucejo, Itaru Endo, Timothy M Pawlik","doi":"10.1002/wjs.12376","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning (ML) may provide novel insights into data patterns and improve model prediction accuracy. The current study sought to develop and validate an ML model to predict early extra-hepatic recurrence (EEHR) among patients undergoing resection of colorectal liver metastasis (CRLM).</p><p><strong>Methods: </strong>Patients with CRLM who underwent curative-intent resection between 2000 and 2020 were identified from an international multi-institutional database. An eXtreme gradient boosting (XGBoost) model was developed to estimate the risk of EEHR, defined as extrahepatic recurrence within 12 months after hepatectomy, using clinicopathological factors. The relative importance of factors was determined using Shapley additive explanations (SHAP) values.</p><p><strong>Results: </strong>Among 1410 patients undergoing curative-intent resection, 131 (9.3%) patients experienced EEHR. Median OS among patients with and without EEHR was 35.4 months (interquartile range [IQR] 29.9-46.7) versus 120.5 months (IQR 97.2-134.0), respectively (p < 0.001). The ML predictive model had c-index values of 0.77 (95% CI, 0.72-0.81) and 0.77 (95% CI, 0.73-0.80) in the entire dataset and the validation data set with bootstrapping resamples, respectively. The SHAP algorithm demonstrated that T and N primary tumor categories, as well as tumor burden score were the three most important predictors of EEHR. An easy-to-use risk calculator for EEHR was developed and made available online at: https://junkawashima.shinyapps.io/EEHR/.</p><p><strong>Conclusions: </strong>An easy-to-use online calculator was developed using ML to help clinicians predict the chance of EEHR after curative-intent resection for CRLM. This tool may help clinicians in decision-making related to treatment strategies for patients with CRLM.</p>","PeriodicalId":23926,"journal":{"name":"World Journal of Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preoperative identification of early extrahepatic recurrence after hepatectomy for colorectal liver metastases: A machine learning approach.\",\"authors\":\"Jun Kawashima, Yutaka Endo, Selamawit Woldesenbet, Odysseas P Chatzipanagiotou, Diamantis I Tsilimigras, Giovanni Catalano, Muhammad Muntazir Mehdi Khan, Zayed Rashid, Mujtaba Khalil, Abdullah Altaf, Muhammad Musaab Munir, Alfredo Guglielmi, Andrea Ruzzenente, Luca Aldrighetti, Sorin Alexandrescu, Minoru Kitago, George Poultsides, Kazunari Sasaki, Federico Aucejo, Itaru Endo, Timothy M Pawlik\",\"doi\":\"10.1002/wjs.12376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Machine learning (ML) may provide novel insights into data patterns and improve model prediction accuracy. The current study sought to develop and validate an ML model to predict early extra-hepatic recurrence (EEHR) among patients undergoing resection of colorectal liver metastasis (CRLM).</p><p><strong>Methods: </strong>Patients with CRLM who underwent curative-intent resection between 2000 and 2020 were identified from an international multi-institutional database. An eXtreme gradient boosting (XGBoost) model was developed to estimate the risk of EEHR, defined as extrahepatic recurrence within 12 months after hepatectomy, using clinicopathological factors. The relative importance of factors was determined using Shapley additive explanations (SHAP) values.</p><p><strong>Results: </strong>Among 1410 patients undergoing curative-intent resection, 131 (9.3%) patients experienced EEHR. Median OS among patients with and without EEHR was 35.4 months (interquartile range [IQR] 29.9-46.7) versus 120.5 months (IQR 97.2-134.0), respectively (p < 0.001). The ML predictive model had c-index values of 0.77 (95% CI, 0.72-0.81) and 0.77 (95% CI, 0.73-0.80) in the entire dataset and the validation data set with bootstrapping resamples, respectively. The SHAP algorithm demonstrated that T and N primary tumor categories, as well as tumor burden score were the three most important predictors of EEHR. An easy-to-use risk calculator for EEHR was developed and made available online at: https://junkawashima.shinyapps.io/EEHR/.</p><p><strong>Conclusions: </strong>An easy-to-use online calculator was developed using ML to help clinicians predict the chance of EEHR after curative-intent resection for CRLM. This tool may help clinicians in decision-making related to treatment strategies for patients with CRLM.</p>\",\"PeriodicalId\":23926,\"journal\":{\"name\":\"World Journal of Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wjs.12376\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wjs.12376","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
Preoperative identification of early extrahepatic recurrence after hepatectomy for colorectal liver metastases: A machine learning approach.
Background: Machine learning (ML) may provide novel insights into data patterns and improve model prediction accuracy. The current study sought to develop and validate an ML model to predict early extra-hepatic recurrence (EEHR) among patients undergoing resection of colorectal liver metastasis (CRLM).
Methods: Patients with CRLM who underwent curative-intent resection between 2000 and 2020 were identified from an international multi-institutional database. An eXtreme gradient boosting (XGBoost) model was developed to estimate the risk of EEHR, defined as extrahepatic recurrence within 12 months after hepatectomy, using clinicopathological factors. The relative importance of factors was determined using Shapley additive explanations (SHAP) values.
Results: Among 1410 patients undergoing curative-intent resection, 131 (9.3%) patients experienced EEHR. Median OS among patients with and without EEHR was 35.4 months (interquartile range [IQR] 29.9-46.7) versus 120.5 months (IQR 97.2-134.0), respectively (p < 0.001). The ML predictive model had c-index values of 0.77 (95% CI, 0.72-0.81) and 0.77 (95% CI, 0.73-0.80) in the entire dataset and the validation data set with bootstrapping resamples, respectively. The SHAP algorithm demonstrated that T and N primary tumor categories, as well as tumor burden score were the three most important predictors of EEHR. An easy-to-use risk calculator for EEHR was developed and made available online at: https://junkawashima.shinyapps.io/EEHR/.
Conclusions: An easy-to-use online calculator was developed using ML to help clinicians predict the chance of EEHR after curative-intent resection for CRLM. This tool may help clinicians in decision-making related to treatment strategies for patients with CRLM.
期刊介绍:
World Journal of Surgery is the official publication of the International Society of Surgery/Societe Internationale de Chirurgie (iss-sic.com). Under the editorship of Dr. Julie Ann Sosa, World Journal of Surgery provides an in-depth, international forum for the most authoritative information on major clinical problems in the fields of clinical and experimental surgery, surgical education, and socioeconomic aspects of surgical care. Contributions are reviewed and selected by a group of distinguished surgeons from across the world who make up the Editorial Board.