NRG1/ERBB4 信号通路对肺动脉内皮细胞的影响。

IF 2.2 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Pulmonary Circulation Pub Date : 2024-10-15 eCollection Date: 2024-10-01 DOI:10.1002/pul2.12439
Jin-Bo Huang, Qin Shen, Zhi-Qi Wang, Song-Shi Ni, Fei Sun, Yun Hua, Jian-An Huang
{"title":"NRG1/ERBB4 信号通路对肺动脉内皮细胞的影响。","authors":"Jin-Bo Huang, Qin Shen, Zhi-Qi Wang, Song-Shi Ni, Fei Sun, Yun Hua, Jian-An Huang","doi":"10.1002/pul2.12439","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to examine the influence of the Neuregulin-1 (NRG1)/ERBB4 signaling pathway on the function of human pulmonary artery endothelial cells (HPAECs) and investigate the underlying mechanisms. Enzyme-linked immunosorbent assay indicated that ERBB4 levels in the serum of patients with pulmonary embolism (PE) were significantly higher than those of healthy controls (<i>p</i> < 0.05). In cellular studies, thrombin stimulation for 6 h led to a significant decrease in cell viability and overexpression of ERBB4 compared to control (<i>p</i> < 0.05). In the NRG1 group, apoptosis of HPAECs was reduced (<i>p</i> < 0.05), accompanied by a decrease in ERBB4 expression and an increase in p-ERBB4, phosphorylated serine/threonine kinase proteins (Akt) (p-Akt), and p-phosphoinositide 3-kinase (PI3K) expression (<i>p</i> < 0.05). In the AG1478 group, there was a significant increase in HPAEC apoptosis and a significant decrease in p-ERBB4 and ERBB4 expression compared to the Con group (<i>p</i> < 0.05). In the AG1478 + NRG1 group, there was an increase in the apoptosis rate and a significant decrease in the expression of p-ERBB4, ERBB4, p-Akt, and phosphorylated PI3K compared to the NRG1 group (<i>p</i> < 0.05). In animal studies, the PE group showed an increase in the expression of ERBB4 and p-ERBB4 compared to the Con group (<i>p</i> < 0.05). NRG1 treatment led to a significant reduction in embolism severity with decreased ERBB4 expression and increased p-ERBB4 expression (<i>p</i> < 0.05). Gene set enrichment analysis identified five pathways that were significantly associated with high ERBB4 expression, including CHOLESTEROL HOMEOSTASIS, OXIDATIVE PHOSPHORYLATION, and FATTY ACID METABOLISM (<i>p</i> < 0.05). Therefore, NRG1 inhibits apoptosis of HPAECs, accompanied by a decrease in ERBB4 and an increase in p-ERBB4. NRG1 inhibition in HPAECs apoptosis can be partially reversed by inhibiting ERBB4 expression with AG1478. ERBB4 has the potential to be a novel biological marker of PE.</p>","PeriodicalId":20927,"journal":{"name":"Pulmonary Circulation","volume":"14 4","pages":"e12439"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475022/pdf/","citationCount":"0","resultStr":"{\"title\":\"The influence of the NRG1/ERBB4 signaling pathway on pulmonary artery endothelial cells.\",\"authors\":\"Jin-Bo Huang, Qin Shen, Zhi-Qi Wang, Song-Shi Ni, Fei Sun, Yun Hua, Jian-An Huang\",\"doi\":\"10.1002/pul2.12439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to examine the influence of the Neuregulin-1 (NRG1)/ERBB4 signaling pathway on the function of human pulmonary artery endothelial cells (HPAECs) and investigate the underlying mechanisms. Enzyme-linked immunosorbent assay indicated that ERBB4 levels in the serum of patients with pulmonary embolism (PE) were significantly higher than those of healthy controls (<i>p</i> < 0.05). In cellular studies, thrombin stimulation for 6 h led to a significant decrease in cell viability and overexpression of ERBB4 compared to control (<i>p</i> < 0.05). In the NRG1 group, apoptosis of HPAECs was reduced (<i>p</i> < 0.05), accompanied by a decrease in ERBB4 expression and an increase in p-ERBB4, phosphorylated serine/threonine kinase proteins (Akt) (p-Akt), and p-phosphoinositide 3-kinase (PI3K) expression (<i>p</i> < 0.05). In the AG1478 group, there was a significant increase in HPAEC apoptosis and a significant decrease in p-ERBB4 and ERBB4 expression compared to the Con group (<i>p</i> < 0.05). In the AG1478 + NRG1 group, there was an increase in the apoptosis rate and a significant decrease in the expression of p-ERBB4, ERBB4, p-Akt, and phosphorylated PI3K compared to the NRG1 group (<i>p</i> < 0.05). In animal studies, the PE group showed an increase in the expression of ERBB4 and p-ERBB4 compared to the Con group (<i>p</i> < 0.05). NRG1 treatment led to a significant reduction in embolism severity with decreased ERBB4 expression and increased p-ERBB4 expression (<i>p</i> < 0.05). Gene set enrichment analysis identified five pathways that were significantly associated with high ERBB4 expression, including CHOLESTEROL HOMEOSTASIS, OXIDATIVE PHOSPHORYLATION, and FATTY ACID METABOLISM (<i>p</i> < 0.05). Therefore, NRG1 inhibits apoptosis of HPAECs, accompanied by a decrease in ERBB4 and an increase in p-ERBB4. NRG1 inhibition in HPAECs apoptosis can be partially reversed by inhibiting ERBB4 expression with AG1478. ERBB4 has the potential to be a novel biological marker of PE.</p>\",\"PeriodicalId\":20927,\"journal\":{\"name\":\"Pulmonary Circulation\",\"volume\":\"14 4\",\"pages\":\"e12439\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475022/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pulmonary Circulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pul2.12439\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pul2.12439","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨神经胶质蛋白-1(NRG1)/ERBB4信号通路对人肺动脉内皮细胞(HPAECs)功能的影响及其内在机制。酶联免疫吸附试验表明,肺栓塞(PE)患者血清中的ERBB4水平明显高于健康对照组(P P P P P P P P P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of the NRG1/ERBB4 signaling pathway on pulmonary artery endothelial cells.

This study aimed to examine the influence of the Neuregulin-1 (NRG1)/ERBB4 signaling pathway on the function of human pulmonary artery endothelial cells (HPAECs) and investigate the underlying mechanisms. Enzyme-linked immunosorbent assay indicated that ERBB4 levels in the serum of patients with pulmonary embolism (PE) were significantly higher than those of healthy controls (p < 0.05). In cellular studies, thrombin stimulation for 6 h led to a significant decrease in cell viability and overexpression of ERBB4 compared to control (p < 0.05). In the NRG1 group, apoptosis of HPAECs was reduced (p < 0.05), accompanied by a decrease in ERBB4 expression and an increase in p-ERBB4, phosphorylated serine/threonine kinase proteins (Akt) (p-Akt), and p-phosphoinositide 3-kinase (PI3K) expression (p < 0.05). In the AG1478 group, there was a significant increase in HPAEC apoptosis and a significant decrease in p-ERBB4 and ERBB4 expression compared to the Con group (p < 0.05). In the AG1478 + NRG1 group, there was an increase in the apoptosis rate and a significant decrease in the expression of p-ERBB4, ERBB4, p-Akt, and phosphorylated PI3K compared to the NRG1 group (p < 0.05). In animal studies, the PE group showed an increase in the expression of ERBB4 and p-ERBB4 compared to the Con group (p < 0.05). NRG1 treatment led to a significant reduction in embolism severity with decreased ERBB4 expression and increased p-ERBB4 expression (p < 0.05). Gene set enrichment analysis identified five pathways that were significantly associated with high ERBB4 expression, including CHOLESTEROL HOMEOSTASIS, OXIDATIVE PHOSPHORYLATION, and FATTY ACID METABOLISM (p < 0.05). Therefore, NRG1 inhibits apoptosis of HPAECs, accompanied by a decrease in ERBB4 and an increase in p-ERBB4. NRG1 inhibition in HPAECs apoptosis can be partially reversed by inhibiting ERBB4 expression with AG1478. ERBB4 has the potential to be a novel biological marker of PE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pulmonary Circulation
Pulmonary Circulation Medicine-Pulmonary and Respiratory Medicine
CiteScore
4.20
自引率
11.50%
发文量
153
审稿时长
15 weeks
期刊介绍: Pulmonary Circulation''s main goal is to encourage basic, translational, and clinical research by investigators, physician-scientists, and clinicans, in the hope of increasing survival rates for pulmonary hypertension and other pulmonary vascular diseases worldwide, and developing new therapeutic approaches for the diseases. Freely available online, Pulmonary Circulation allows diverse knowledge of research, techniques, and case studies to reach a wide readership of specialists in order to improve patient care and treatment outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信