延伸阶段 RNA 聚合酶的精确可解模型

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ngo P N Ngoc, Vladimir Belitsky, Gunter M Schütz
{"title":"延伸阶段 RNA 聚合酶的精确可解模型","authors":"Ngo P N Ngoc, Vladimir Belitsky, Gunter M Schütz","doi":"10.1088/1478-3975/ad899e","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a Markovian model for the kinetics of RNA Polymerase (RNAP) which provides a physical explanation for the phenomenon of cooperative pushing during transcription elongation observed in biochemical experiments on<i>Escherichia coli</i>and yeast RNAP. To study how backtracking of RNAP affects cooperative pushing we incorporate into this model backward (upstream) RNAP moves. With a rigorous mathematical treatment of the model we derive conditions on the mutual static and kinetic interactions between RNAP under which backtracking preserves cooperative pushing. This is achieved by exact computation of several key properties in the steady state of this model, including the distribution of headway between two RNAP along the DNA template and the average RNAP velocity and flux.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exactly solvable model for RNA polymerase during the elongation stage.\",\"authors\":\"Ngo P N Ngoc, Vladimir Belitsky, Gunter M Schütz\",\"doi\":\"10.1088/1478-3975/ad899e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider a Markovian model for the kinetics of RNA Polymerase (RNAP) which provides a physical explanation for the phenomenon of cooperative pushing during transcription elongation observed in biochemical experiments on<i>Escherichia coli</i>and yeast RNAP. To study how backtracking of RNAP affects cooperative pushing we incorporate into this model backward (upstream) RNAP moves. With a rigorous mathematical treatment of the model we derive conditions on the mutual static and kinetic interactions between RNAP under which backtracking preserves cooperative pushing. This is achieved by exact computation of several key properties in the steady state of this model, including the distribution of headway between two RNAP along the DNA template and the average RNAP velocity and flux.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ad899e\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ad899e","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们对 RNA 聚合酶(RNAP)动力学的马尔可夫模型进行了研究,该模型为{it Escherichia coli} 和酵母 RNAP 的生化实验中观察到的转录延伸过程中的合作推动现象提供了物理解释。为了研究 RNAP 的回溯如何影响合作推动,我们在该模型中加入了 RNAP 的后向(上游)移动。通过对模型进行严格的数学处理,我们推导出了RNAP之间相互静态和动力学相互作用的条件,在这些条件下,反向追踪可以保持合作推动。这是通过精确计算该模型稳态中的几个关键属性实现的,包括两个 RNAP 沿 DNA 模板的前进方向分布以及 RNAP 的平均速度和 flux. .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exactly solvable model for RNA polymerase during the elongation stage.

We consider a Markovian model for the kinetics of RNA Polymerase (RNAP) which provides a physical explanation for the phenomenon of cooperative pushing during transcription elongation observed in biochemical experiments onEscherichia coliand yeast RNAP. To study how backtracking of RNAP affects cooperative pushing we incorporate into this model backward (upstream) RNAP moves. With a rigorous mathematical treatment of the model we derive conditions on the mutual static and kinetic interactions between RNAP under which backtracking preserves cooperative pushing. This is achieved by exact computation of several key properties in the steady state of this model, including the distribution of headway between two RNAP along the DNA template and the average RNAP velocity and flux.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信