解码和修正游戏障碍中的动态注意偏差。

IF 5.4 2区 生物学 Q1 BIOLOGY
Taiki Oka, Takatomi Kubo, Nao Kobayashi, Misa Murakami, Toshinori Chiba, Aurelio Cortese
{"title":"解码和修正游戏障碍中的动态注意偏差。","authors":"Taiki Oka, Takatomi Kubo, Nao Kobayashi, Misa Murakami, Toshinori Chiba, Aurelio Cortese","doi":"10.1098/rstb.2023.0090","DOIUrl":null,"url":null,"abstract":"<p><p>With the spread of smartphones and computer games, concerns have escalated regarding the rising prevalence of gaming disorder. Patients often display attentional biases, unconsciously turning their attention towards gaming-related stimuli. However, attempts to discover and ameliorate these attentional deficits have yielded inconsistent outcomes, potentially due to the dynamic nature of attentional bias. This study investigated neural mechanisms underlying attentional bias state by combining neuroimaging (functional magnetic resonance imaging -fMRI) with an approach-avoidance task tailored to an individual's gaming preference. We conducted a multivariate pattern analysis of endogenous brain activity in 21 participants with probable gaming disorder. Our analyses revealed that activity patterns in the insula tracked temporal attentional bias states specific to gaming stimuli. A broad network of frontal and parietal regions instead appeared to predict a general temporal attentional bias state. Finally, we conducted a proof-of-concept study for 'just-in-time' attentional bias training through fMRI-decoded neurofeedback of insula activity patterns, named decoded attentional bias training (DecABT). Our preliminary results suggest that DecABT may help to decrease the attractiveness of gaming stimuli via a insula- and precuneus-based neural mechanism. This work provides new evidence for the insula as an endogenous regulator of attentional bias states in gaming disorder and a starting point to develop novel, individualized therapeutic approaches to treat addiction.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding and modifying dynamic attentional bias in gaming disorder.\",\"authors\":\"Taiki Oka, Takatomi Kubo, Nao Kobayashi, Misa Murakami, Toshinori Chiba, Aurelio Cortese\",\"doi\":\"10.1098/rstb.2023.0090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the spread of smartphones and computer games, concerns have escalated regarding the rising prevalence of gaming disorder. Patients often display attentional biases, unconsciously turning their attention towards gaming-related stimuli. However, attempts to discover and ameliorate these attentional deficits have yielded inconsistent outcomes, potentially due to the dynamic nature of attentional bias. This study investigated neural mechanisms underlying attentional bias state by combining neuroimaging (functional magnetic resonance imaging -fMRI) with an approach-avoidance task tailored to an individual's gaming preference. We conducted a multivariate pattern analysis of endogenous brain activity in 21 participants with probable gaming disorder. Our analyses revealed that activity patterns in the insula tracked temporal attentional bias states specific to gaming stimuli. A broad network of frontal and parietal regions instead appeared to predict a general temporal attentional bias state. Finally, we conducted a proof-of-concept study for 'just-in-time' attentional bias training through fMRI-decoded neurofeedback of insula activity patterns, named decoded attentional bias training (DecABT). Our preliminary results suggest that DecABT may help to decrease the attractiveness of gaming stimuli via a insula- and precuneus-based neural mechanism. This work provides new evidence for the insula as an endogenous regulator of attentional bias states in gaming disorder and a starting point to develop novel, individualized therapeutic approaches to treat addiction.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.</p>\",\"PeriodicalId\":19872,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rstb.2023.0090\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0090","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着智能手机和电脑游戏的普及,人们对游戏障碍发病率上升的担忧也在不断升级。患者通常会表现出注意偏差,不自觉地将注意力转向与游戏相关的刺激物。然而,试图发现和改善这些注意缺陷的努力所取得的结果并不一致,这可能是由于注意偏差的动态性质造成的。本研究通过将神经影像学(功能磁共振成像-fMRI)与根据个人游戏偏好定制的接近-回避任务相结合,研究了注意力偏差状态的神经机制。我们对 21 名可能患有游戏障碍的参与者的内源性大脑活动进行了多变量模式分析。我们的分析表明,脑岛的活动模式追踪了游戏刺激所特有的时间注意偏差状态。相反,额叶和顶叶区域的广泛网络似乎可以预测一般的时间注意偏差状态。最后,我们进行了一项概念验证研究,通过对脑岛区活动模式进行fMRI解码神经反馈来进行 "及时 "注意偏差训练,并将其命名为解码注意偏差训练(DecABT)。我们的初步研究结果表明,DecABT 可通过脑岛和楔前神经机制帮助降低游戏刺激的吸引力。这项工作提供了新的证据,证明脑岛是游戏障碍中注意偏差状态的内源性调节器,并为开发新型、个性化的治疗方法提供了起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding and modifying dynamic attentional bias in gaming disorder.

With the spread of smartphones and computer games, concerns have escalated regarding the rising prevalence of gaming disorder. Patients often display attentional biases, unconsciously turning their attention towards gaming-related stimuli. However, attempts to discover and ameliorate these attentional deficits have yielded inconsistent outcomes, potentially due to the dynamic nature of attentional bias. This study investigated neural mechanisms underlying attentional bias state by combining neuroimaging (functional magnetic resonance imaging -fMRI) with an approach-avoidance task tailored to an individual's gaming preference. We conducted a multivariate pattern analysis of endogenous brain activity in 21 participants with probable gaming disorder. Our analyses revealed that activity patterns in the insula tracked temporal attentional bias states specific to gaming stimuli. A broad network of frontal and parietal regions instead appeared to predict a general temporal attentional bias state. Finally, we conducted a proof-of-concept study for 'just-in-time' attentional bias training through fMRI-decoded neurofeedback of insula activity patterns, named decoded attentional bias training (DecABT). Our preliminary results suggest that DecABT may help to decrease the attractiveness of gaming stimuli via a insula- and precuneus-based neural mechanism. This work provides new evidence for the insula as an endogenous regulator of attentional bias states in gaming disorder and a starting point to develop novel, individualized therapeutic approaches to treat addiction.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信