Samuel Schmidgall, Carl Harris, Ime Essien, Daniel Olshvang, Tawsifur Rahman, Ji Woong Kim, Rojin Ziaei, Jason Eshraghian, Peter Abadir, Rama Chellappa
{"title":"评估和减轻医学语言模型中的认知偏差。","authors":"Samuel Schmidgall, Carl Harris, Ime Essien, Daniel Olshvang, Tawsifur Rahman, Ji Woong Kim, Rojin Ziaei, Jason Eshraghian, Peter Abadir, Rama Chellappa","doi":"10.1038/s41746-024-01283-6","DOIUrl":null,"url":null,"abstract":"Increasing interest in applying large language models (LLMs) to medicine is due in part to their impressive performance on medical exam questions. However, these exams do not capture the complexity of real patient–doctor interactions because of factors like patient compliance, experience, and cognitive bias. We hypothesized that LLMs would produce less accurate responses when faced with clinically biased questions as compared to unbiased ones. To test this, we developed the BiasMedQA dataset, which consists of 1273 USMLE questions modified to replicate common clinically relevant cognitive biases. We assessed six LLMs on BiasMedQA and found that GPT-4 stood out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which showed large drops in performance. Additionally, we introduced three bias mitigation strategies, which improved but did not fully restore accuracy. Our findings highlight the need to improve LLMs’ robustness to cognitive biases, in order to achieve more reliable applications of LLMs in healthcare.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-9"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494053/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation and mitigation of cognitive biases in medical language models\",\"authors\":\"Samuel Schmidgall, Carl Harris, Ime Essien, Daniel Olshvang, Tawsifur Rahman, Ji Woong Kim, Rojin Ziaei, Jason Eshraghian, Peter Abadir, Rama Chellappa\",\"doi\":\"10.1038/s41746-024-01283-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing interest in applying large language models (LLMs) to medicine is due in part to their impressive performance on medical exam questions. However, these exams do not capture the complexity of real patient–doctor interactions because of factors like patient compliance, experience, and cognitive bias. We hypothesized that LLMs would produce less accurate responses when faced with clinically biased questions as compared to unbiased ones. To test this, we developed the BiasMedQA dataset, which consists of 1273 USMLE questions modified to replicate common clinically relevant cognitive biases. We assessed six LLMs on BiasMedQA and found that GPT-4 stood out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which showed large drops in performance. Additionally, we introduced three bias mitigation strategies, which improved but did not fully restore accuracy. Our findings highlight the need to improve LLMs’ robustness to cognitive biases, in order to achieve more reliable applications of LLMs in healthcare.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494053/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01283-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01283-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Evaluation and mitigation of cognitive biases in medical language models
Increasing interest in applying large language models (LLMs) to medicine is due in part to their impressive performance on medical exam questions. However, these exams do not capture the complexity of real patient–doctor interactions because of factors like patient compliance, experience, and cognitive bias. We hypothesized that LLMs would produce less accurate responses when faced with clinically biased questions as compared to unbiased ones. To test this, we developed the BiasMedQA dataset, which consists of 1273 USMLE questions modified to replicate common clinically relevant cognitive biases. We assessed six LLMs on BiasMedQA and found that GPT-4 stood out for its resilience to bias, in contrast to Llama 2 70B-chat and PMC Llama 13B, which showed large drops in performance. Additionally, we introduced three bias mitigation strategies, which improved but did not fully restore accuracy. Our findings highlight the need to improve LLMs’ robustness to cognitive biases, in order to achieve more reliable applications of LLMs in healthcare.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.