{"title":"乳腺癌血液中微生物群和肠道微生物代谢物的综合分析。","authors":"Yu Peng, Jiale Gu, Fubin Liu, Peng Wang, Xixuan Wang, Changyu Si, Jianxiao Gong, Huijun Zhou, Ailing Qin, Fangfang Song","doi":"10.1128/msystems.00643-24","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota and associated metabolites have been linked to breast carcinogenesis. Evidences demonstrate blood microbiota primarily originates from the gut and may act as a biomarker for breast cancer. We aimed to characterize the microbiota-gut microbial metabolites cross-talk in blood and develop a composite diagnostic panel for breast cancer. We performed 16S rRNA gene sequencing and metabolomics profiling on blood samples from 107 breast cancer cases and 107 age-paired controls. We found that the alpha diversity of the blood microbiota was decreased in breast cancer compared to controls. There were significantly different profiles of microbiota and gut microbial metabolites in blood between these two groups, with nine bacterial genera and four gut microbial metabolites increased in patients, while thirty-nine bacterial genera and two gut microbial metabolites increased in controls. Some breast cancer-associated gut microbial metabolites were linked to differential blood microbiota, and a composite microbiota-metabolite diagnostic panel was further developed with an area under the curve of 0.963 for breast cancer. This study underscored the pivotal role of microbiota and gut microbial metabolites in blood and their interactions for breast carcinogenesis, as well as the potential of a composite diagnostic panel as a non-invasive biomarker for breast cancer.IMPORTANCEOur integrated analysis demonstrated altered profiles of microbiota and gut microbial metabolites in blood for breast cancer patients. The extensive correlation between microbiota and gut microbial metabolites in blood assisted the understanding of the pathogenesis of breast cancer. The good performance of a composite microbiota-gut microbial metabolites panel in blood suggested a non-invasive approach for breast cancer detection and a novel strategy for better diagnosis and prevention of breast cancer in the future.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":" ","pages":"e0064324"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of microbiota and gut microbial metabolites in blood for breast cancer.\",\"authors\":\"Yu Peng, Jiale Gu, Fubin Liu, Peng Wang, Xixuan Wang, Changyu Si, Jianxiao Gong, Huijun Zhou, Ailing Qin, Fangfang Song\",\"doi\":\"10.1128/msystems.00643-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gut microbiota and associated metabolites have been linked to breast carcinogenesis. Evidences demonstrate blood microbiota primarily originates from the gut and may act as a biomarker for breast cancer. We aimed to characterize the microbiota-gut microbial metabolites cross-talk in blood and develop a composite diagnostic panel for breast cancer. We performed 16S rRNA gene sequencing and metabolomics profiling on blood samples from 107 breast cancer cases and 107 age-paired controls. We found that the alpha diversity of the blood microbiota was decreased in breast cancer compared to controls. There were significantly different profiles of microbiota and gut microbial metabolites in blood between these two groups, with nine bacterial genera and four gut microbial metabolites increased in patients, while thirty-nine bacterial genera and two gut microbial metabolites increased in controls. Some breast cancer-associated gut microbial metabolites were linked to differential blood microbiota, and a composite microbiota-metabolite diagnostic panel was further developed with an area under the curve of 0.963 for breast cancer. This study underscored the pivotal role of microbiota and gut microbial metabolites in blood and their interactions for breast carcinogenesis, as well as the potential of a composite diagnostic panel as a non-invasive biomarker for breast cancer.IMPORTANCEOur integrated analysis demonstrated altered profiles of microbiota and gut microbial metabolites in blood for breast cancer patients. The extensive correlation between microbiota and gut microbial metabolites in blood assisted the understanding of the pathogenesis of breast cancer. The good performance of a composite microbiota-gut microbial metabolites panel in blood suggested a non-invasive approach for breast cancer detection and a novel strategy for better diagnosis and prevention of breast cancer in the future.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":\" \",\"pages\":\"e0064324\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.00643-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00643-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Integrated analysis of microbiota and gut microbial metabolites in blood for breast cancer.
Gut microbiota and associated metabolites have been linked to breast carcinogenesis. Evidences demonstrate blood microbiota primarily originates from the gut and may act as a biomarker for breast cancer. We aimed to characterize the microbiota-gut microbial metabolites cross-talk in blood and develop a composite diagnostic panel for breast cancer. We performed 16S rRNA gene sequencing and metabolomics profiling on blood samples from 107 breast cancer cases and 107 age-paired controls. We found that the alpha diversity of the blood microbiota was decreased in breast cancer compared to controls. There were significantly different profiles of microbiota and gut microbial metabolites in blood between these two groups, with nine bacterial genera and four gut microbial metabolites increased in patients, while thirty-nine bacterial genera and two gut microbial metabolites increased in controls. Some breast cancer-associated gut microbial metabolites were linked to differential blood microbiota, and a composite microbiota-metabolite diagnostic panel was further developed with an area under the curve of 0.963 for breast cancer. This study underscored the pivotal role of microbiota and gut microbial metabolites in blood and their interactions for breast carcinogenesis, as well as the potential of a composite diagnostic panel as a non-invasive biomarker for breast cancer.IMPORTANCEOur integrated analysis demonstrated altered profiles of microbiota and gut microbial metabolites in blood for breast cancer patients. The extensive correlation between microbiota and gut microbial metabolites in blood assisted the understanding of the pathogenesis of breast cancer. The good performance of a composite microbiota-gut microbial metabolites panel in blood suggested a non-invasive approach for breast cancer detection and a novel strategy for better diagnosis and prevention of breast cancer in the future.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.