利用目标捕获测序技术对低病毒载量临床样本中的呼吸道病毒进行直接基因组测序。

IF 3.7 2区 生物学 Q2 MICROBIOLOGY
Microbiology spectrum Pub Date : 2024-11-05 Epub Date: 2024-10-14 DOI:10.1128/spectrum.00986-24
Nobuhiro Takemae, Yumani Kuba, Kunihiro Oba, Tsutomu Kageyama
{"title":"利用目标捕获测序技术对低病毒载量临床样本中的呼吸道病毒进行直接基因组测序。","authors":"Nobuhiro Takemae, Yumani Kuba, Kunihiro Oba, Tsutomu Kageyama","doi":"10.1128/spectrum.00986-24","DOIUrl":null,"url":null,"abstract":"<p><p>The use of metagenomic next-generation sequencing technology to obtain complete viral genome sequences directly from clinical samples with low viral load remains challenging-especially in the case of respiratory viruses-due to the low copy number of viral versus host genomes. To overcome this limitation, target capture sequencing for the enrichment of specific genomes has been developed and applied for direct genome sequencing of viruses. However, as the efficiency of enrichment varies depending on the probes, the type of clinical sample, etc., validation is essential before target capture sequencing can be applied to clinical diagnostics. In this study, we evaluated the utility of target capture sequencing with a comprehensive viral probe panel for clinical respiratory specimens collected from patients diagnosed with SARS-CoV-2 or influenza type A. We focused on clinical specimens containing low copy numbers of viral genomes. Target capture sequencing yielded approximately 180- and 2,000-fold higher read counts of SARS-CoV-2 and influenza A virus, respectively, than metagenomic sequencing when the RNA extracted from specimens contained 59.3 copies/µL of SARS-CoV-2 or 625.1 copies/µL of influenza A virus. In addition, the target capture sequencing identified sequence reads in all SARS-CoV-2- or influenza type A-positive specimens with <26 RNA copies/µL, some of which also yielded >70% of the full-length genomes of SARS-CoV-2 or influenza A virus. Furthermore, the target capture sequencing using comprehensive probes identified co-infections with viruses other than SARS-CoV-2, suggesting that this approach will not only detect a wide range of viruses but also contribute to epidemiological studies.IMPORTANCETarget capture sequencing has been developed and applied for direct genome sequencing of viruses in clinical specimens to overcome the low detection sensitivity of metagenomic next-generation sequencing. In this study, we evaluated the utility of target capture sequencing with a comprehensive viral probe panel for clinical respiratory specimens collected from patients diagnosed with SARS-CoV-2 or influenza type A, focusing on clinical specimens containing low copy numbers of viral genomes. Our results showed that the target capture sequencing yielded dramatically higher read counts than metagenomic sequencing for both viruses. Furthermore, the target capture sequencing using comprehensive probes identified co-infections with other viruses, suggesting that this approach will not only detect a wide range of viruses but also contribute to epidemiological studies.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct genome sequencing of respiratory viruses from low viral load clinical specimens using the target capture sequencing technology.\",\"authors\":\"Nobuhiro Takemae, Yumani Kuba, Kunihiro Oba, Tsutomu Kageyama\",\"doi\":\"10.1128/spectrum.00986-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of metagenomic next-generation sequencing technology to obtain complete viral genome sequences directly from clinical samples with low viral load remains challenging-especially in the case of respiratory viruses-due to the low copy number of viral versus host genomes. To overcome this limitation, target capture sequencing for the enrichment of specific genomes has been developed and applied for direct genome sequencing of viruses. However, as the efficiency of enrichment varies depending on the probes, the type of clinical sample, etc., validation is essential before target capture sequencing can be applied to clinical diagnostics. In this study, we evaluated the utility of target capture sequencing with a comprehensive viral probe panel for clinical respiratory specimens collected from patients diagnosed with SARS-CoV-2 or influenza type A. We focused on clinical specimens containing low copy numbers of viral genomes. Target capture sequencing yielded approximately 180- and 2,000-fold higher read counts of SARS-CoV-2 and influenza A virus, respectively, than metagenomic sequencing when the RNA extracted from specimens contained 59.3 copies/µL of SARS-CoV-2 or 625.1 copies/µL of influenza A virus. In addition, the target capture sequencing identified sequence reads in all SARS-CoV-2- or influenza type A-positive specimens with <26 RNA copies/µL, some of which also yielded >70% of the full-length genomes of SARS-CoV-2 or influenza A virus. Furthermore, the target capture sequencing using comprehensive probes identified co-infections with viruses other than SARS-CoV-2, suggesting that this approach will not only detect a wide range of viruses but also contribute to epidemiological studies.IMPORTANCETarget capture sequencing has been developed and applied for direct genome sequencing of viruses in clinical specimens to overcome the low detection sensitivity of metagenomic next-generation sequencing. In this study, we evaluated the utility of target capture sequencing with a comprehensive viral probe panel for clinical respiratory specimens collected from patients diagnosed with SARS-CoV-2 or influenza type A, focusing on clinical specimens containing low copy numbers of viral genomes. Our results showed that the target capture sequencing yielded dramatically higher read counts than metagenomic sequencing for both viruses. Furthermore, the target capture sequencing using comprehensive probes identified co-infections with other viruses, suggesting that this approach will not only detect a wide range of viruses but also contribute to epidemiological studies.</p>\",\"PeriodicalId\":18670,\"journal\":{\"name\":\"Microbiology spectrum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology spectrum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/spectrum.00986-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.00986-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于病毒基因组相对于宿主基因组的拷贝数较低,使用元基因组新一代测序技术直接从病毒载量较低的临床样本中获取完整的病毒基因组序列仍具有挑战性,尤其是呼吸道病毒。为了克服这一限制,人们开发了用于富集特定基因组的目标捕获测序技术,并将其应用于病毒的直接基因组测序。然而,由于富集效率因探针、临床样本类型等因素而异,因此在将靶向捕获测序应用于临床诊断之前,必须先进行验证。在这项研究中,我们评估了靶向捕获测序与综合病毒探针面板在临床呼吸道标本中的应用,这些标本采集自确诊为SARS-CoV-2或甲型流感的患者。当标本中提取的 RNA 含有 59.3 个拷贝/微升的 SARS-CoV-2 病毒或 625.1 个拷贝/微升的甲型流感病毒时,目标捕获测序的 SARS-CoV-2 和甲型流感病毒读数分别比元基因组测序高出约 180 倍和 2000 倍。此外,在所有 SARS-CoV-2 或甲型流感病毒阳性的标本中,目标捕获测序都能识别出 70% 的 SARS-CoV-2 或甲型流感病毒全长基因组序列读数。此外,使用综合探针进行的目标捕获测序发现了除SARS-CoV-2之外的其他病毒的合并感染,这表明这种方法不仅能检测多种病毒,还能为流行病学研究做出贡献。在这项研究中,我们评估了靶向捕获测序与综合病毒探针面板在临床呼吸道标本中的应用,这些标本采集自确诊为SARS-CoV-2或甲型流感的患者,重点是含有低拷贝数病毒基因组的临床标本。我们的研究结果表明,对这两种病毒而言,目标捕获测序法的读数数量大大高于元基因组测序法。此外,使用综合探针进行的目标捕获测序还发现了与其他病毒的合并感染,这表明这种方法不仅能检测多种病毒,还有助于流行病学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct genome sequencing of respiratory viruses from low viral load clinical specimens using the target capture sequencing technology.

The use of metagenomic next-generation sequencing technology to obtain complete viral genome sequences directly from clinical samples with low viral load remains challenging-especially in the case of respiratory viruses-due to the low copy number of viral versus host genomes. To overcome this limitation, target capture sequencing for the enrichment of specific genomes has been developed and applied for direct genome sequencing of viruses. However, as the efficiency of enrichment varies depending on the probes, the type of clinical sample, etc., validation is essential before target capture sequencing can be applied to clinical diagnostics. In this study, we evaluated the utility of target capture sequencing with a comprehensive viral probe panel for clinical respiratory specimens collected from patients diagnosed with SARS-CoV-2 or influenza type A. We focused on clinical specimens containing low copy numbers of viral genomes. Target capture sequencing yielded approximately 180- and 2,000-fold higher read counts of SARS-CoV-2 and influenza A virus, respectively, than metagenomic sequencing when the RNA extracted from specimens contained 59.3 copies/µL of SARS-CoV-2 or 625.1 copies/µL of influenza A virus. In addition, the target capture sequencing identified sequence reads in all SARS-CoV-2- or influenza type A-positive specimens with <26 RNA copies/µL, some of which also yielded >70% of the full-length genomes of SARS-CoV-2 or influenza A virus. Furthermore, the target capture sequencing using comprehensive probes identified co-infections with viruses other than SARS-CoV-2, suggesting that this approach will not only detect a wide range of viruses but also contribute to epidemiological studies.IMPORTANCETarget capture sequencing has been developed and applied for direct genome sequencing of viruses in clinical specimens to overcome the low detection sensitivity of metagenomic next-generation sequencing. In this study, we evaluated the utility of target capture sequencing with a comprehensive viral probe panel for clinical respiratory specimens collected from patients diagnosed with SARS-CoV-2 or influenza type A, focusing on clinical specimens containing low copy numbers of viral genomes. Our results showed that the target capture sequencing yielded dramatically higher read counts than metagenomic sequencing for both viruses. Furthermore, the target capture sequencing using comprehensive probes identified co-infections with other viruses, suggesting that this approach will not only detect a wide range of viruses but also contribute to epidemiological studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信