Jian Zhang, Huiwen Wang, Qianbing Wang, Juan Mo, Lei Fu, Shifang Peng
{"title":"EEF1A2 被确定为与代谢功能障碍相关性脂肪肝严重程度有关的枢纽基因。","authors":"Jian Zhang, Huiwen Wang, Qianbing Wang, Juan Mo, Lei Fu, Shifang Peng","doi":"10.1007/s00335-024-10078-9","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease that ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may eventually progress to cirrhosis and hepatocellular carcinoma (HCC). The underlying mechanism of MASLD remains incompletely understood. This study aimed to identify key gene implicated in MASLD pathogenesis and validate its correlation with disease severity through an integration of bioinformatics and experimental approaches. Liver transcriptome data from MASLD patients were obtained from the Gene Expression Omnibus (GEO) database. A diet-induced MASLD mouse model was developed, and liver RNA-sequencing was performed. Liver specimens and clinical data from patients were collected for further analysis. A total of 120 differentially expressed genes (DEGs) were shared between datasets GSE89632 and GSE213621, with functional enrichment in inflammatory, metabolic, and cell cycle-related pathways. Protein-protein interaction (PPI) network analysis identified three modules associated with MASLD, with the cell cycle-related module being the most notable. EEF1A2 was identified as a novel hub gene and revealed to be elevated with MASLD progression through dataset analysis. EEF1A2 was confirmed to be highly expressed in the livers of both MASLD mouse models and patients. Moreover, the increased expression of EEF1A2 in MASH was positively correlated with higher serum alanine aminotransferase (ALT), alanine aminotransferase (AST), total cholesterol (TC), and body mass index (BMI). In conclusion, EEF1A2 is a novel hub gene significantly associated with MASLD severity and is a promising biomarker and therapeutic target for MASLD.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease.\",\"authors\":\"Jian Zhang, Huiwen Wang, Qianbing Wang, Juan Mo, Lei Fu, Shifang Peng\",\"doi\":\"10.1007/s00335-024-10078-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease that ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may eventually progress to cirrhosis and hepatocellular carcinoma (HCC). The underlying mechanism of MASLD remains incompletely understood. This study aimed to identify key gene implicated in MASLD pathogenesis and validate its correlation with disease severity through an integration of bioinformatics and experimental approaches. Liver transcriptome data from MASLD patients were obtained from the Gene Expression Omnibus (GEO) database. A diet-induced MASLD mouse model was developed, and liver RNA-sequencing was performed. Liver specimens and clinical data from patients were collected for further analysis. A total of 120 differentially expressed genes (DEGs) were shared between datasets GSE89632 and GSE213621, with functional enrichment in inflammatory, metabolic, and cell cycle-related pathways. Protein-protein interaction (PPI) network analysis identified three modules associated with MASLD, with the cell cycle-related module being the most notable. EEF1A2 was identified as a novel hub gene and revealed to be elevated with MASLD progression through dataset analysis. EEF1A2 was confirmed to be highly expressed in the livers of both MASLD mouse models and patients. Moreover, the increased expression of EEF1A2 in MASH was positively correlated with higher serum alanine aminotransferase (ALT), alanine aminotransferase (AST), total cholesterol (TC), and body mass index (BMI). In conclusion, EEF1A2 is a novel hub gene significantly associated with MASLD severity and is a promising biomarker and therapeutic target for MASLD.</p>\",\"PeriodicalId\":18259,\"journal\":{\"name\":\"Mammalian Genome\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mammalian Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00335-024-10078-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-024-10078-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disease that ranges from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may eventually progress to cirrhosis and hepatocellular carcinoma (HCC). The underlying mechanism of MASLD remains incompletely understood. This study aimed to identify key gene implicated in MASLD pathogenesis and validate its correlation with disease severity through an integration of bioinformatics and experimental approaches. Liver transcriptome data from MASLD patients were obtained from the Gene Expression Omnibus (GEO) database. A diet-induced MASLD mouse model was developed, and liver RNA-sequencing was performed. Liver specimens and clinical data from patients were collected for further analysis. A total of 120 differentially expressed genes (DEGs) were shared between datasets GSE89632 and GSE213621, with functional enrichment in inflammatory, metabolic, and cell cycle-related pathways. Protein-protein interaction (PPI) network analysis identified three modules associated with MASLD, with the cell cycle-related module being the most notable. EEF1A2 was identified as a novel hub gene and revealed to be elevated with MASLD progression through dataset analysis. EEF1A2 was confirmed to be highly expressed in the livers of both MASLD mouse models and patients. Moreover, the increased expression of EEF1A2 in MASH was positively correlated with higher serum alanine aminotransferase (ALT), alanine aminotransferase (AST), total cholesterol (TC), and body mass index (BMI). In conclusion, EEF1A2 is a novel hub gene significantly associated with MASLD severity and is a promising biomarker and therapeutic target for MASLD.
期刊介绍:
Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.