Bradley Wilhelmy, Volodymyr Gerzanich, J Marc Simard, Jesse A Stokum
{"title":"NCX1 钙交换器与周围神经拉伸损伤后的延迟轴突切断有关。","authors":"Bradley Wilhelmy, Volodymyr Gerzanich, J Marc Simard, Jesse A Stokum","doi":"10.1111/jns.12663","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>After peripheral nerve stretch injury, most degenerating axons are thought to become disconnected at the time of injury, referred to as primary axotomy. The possibility of secondary axotomy-a delayed and potentially reversible form of disconnection-has not been evaluated. Here, we investigated secondary axotomy in a rat model of sciatic nerve stretch injury. We also evaluated whether axon sparing and functional improvement results from pharmacological blockade of the sodium-calcium exchanger 1 (NCX1), which is widely believed to contribute to traumatic axon degeneration but was previously only investigated in vitro.</p><p><strong>Methods: </strong>We studied peripheral nerve secondary axotomy in a clinically relevant rat model of sciatic nerve rapid stretch injury with immunolabeling and fluorescence microscopy. The role of NCX1 in secondary axotomy was studied with pharmacological inhibition with SEA0400 and immunolabeling, immunoblot, and behavioral assays.</p><p><strong>Results: </strong>We found that early after injury, many axons remained in-continuity and that degeneration of axons was delayed, consistent with the occurrence of secondary axotomy. βAPP, a marker of secondary axotomy, accumulated at regions of axon swelling and disconnection, and NCX1 was upregulated and co-localized to βAPP axonal swellings. Pharmacological blockade of NCX1 after injury reduced calpain activation, proteolytic degradation of neurofilaments, βAPP accumulation, distal axon degeneration, and improved hindlimb function.</p><p><strong>Interpretation: </strong>Our data demonstrate a major role for secondary axotomy in peripheral nerve stretch injury and identify NCX1 as a promising therapeutic target to reduce secondary axotomy and improve functional outcome after nerve injury.</p>","PeriodicalId":17451,"journal":{"name":"Journal of the Peripheral Nervous System","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The NCX1 calcium exchanger is implicated in delayed axotomy after peripheral nerve stretch injury.\",\"authors\":\"Bradley Wilhelmy, Volodymyr Gerzanich, J Marc Simard, Jesse A Stokum\",\"doi\":\"10.1111/jns.12663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>After peripheral nerve stretch injury, most degenerating axons are thought to become disconnected at the time of injury, referred to as primary axotomy. The possibility of secondary axotomy-a delayed and potentially reversible form of disconnection-has not been evaluated. Here, we investigated secondary axotomy in a rat model of sciatic nerve stretch injury. We also evaluated whether axon sparing and functional improvement results from pharmacological blockade of the sodium-calcium exchanger 1 (NCX1), which is widely believed to contribute to traumatic axon degeneration but was previously only investigated in vitro.</p><p><strong>Methods: </strong>We studied peripheral nerve secondary axotomy in a clinically relevant rat model of sciatic nerve rapid stretch injury with immunolabeling and fluorescence microscopy. The role of NCX1 in secondary axotomy was studied with pharmacological inhibition with SEA0400 and immunolabeling, immunoblot, and behavioral assays.</p><p><strong>Results: </strong>We found that early after injury, many axons remained in-continuity and that degeneration of axons was delayed, consistent with the occurrence of secondary axotomy. βAPP, a marker of secondary axotomy, accumulated at regions of axon swelling and disconnection, and NCX1 was upregulated and co-localized to βAPP axonal swellings. Pharmacological blockade of NCX1 after injury reduced calpain activation, proteolytic degradation of neurofilaments, βAPP accumulation, distal axon degeneration, and improved hindlimb function.</p><p><strong>Interpretation: </strong>Our data demonstrate a major role for secondary axotomy in peripheral nerve stretch injury and identify NCX1 as a promising therapeutic target to reduce secondary axotomy and improve functional outcome after nerve injury.</p>\",\"PeriodicalId\":17451,\"journal\":{\"name\":\"Journal of the Peripheral Nervous System\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Peripheral Nervous System\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jns.12663\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Peripheral Nervous System","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jns.12663","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The NCX1 calcium exchanger is implicated in delayed axotomy after peripheral nerve stretch injury.
Background and aims: After peripheral nerve stretch injury, most degenerating axons are thought to become disconnected at the time of injury, referred to as primary axotomy. The possibility of secondary axotomy-a delayed and potentially reversible form of disconnection-has not been evaluated. Here, we investigated secondary axotomy in a rat model of sciatic nerve stretch injury. We also evaluated whether axon sparing and functional improvement results from pharmacological blockade of the sodium-calcium exchanger 1 (NCX1), which is widely believed to contribute to traumatic axon degeneration but was previously only investigated in vitro.
Methods: We studied peripheral nerve secondary axotomy in a clinically relevant rat model of sciatic nerve rapid stretch injury with immunolabeling and fluorescence microscopy. The role of NCX1 in secondary axotomy was studied with pharmacological inhibition with SEA0400 and immunolabeling, immunoblot, and behavioral assays.
Results: We found that early after injury, many axons remained in-continuity and that degeneration of axons was delayed, consistent with the occurrence of secondary axotomy. βAPP, a marker of secondary axotomy, accumulated at regions of axon swelling and disconnection, and NCX1 was upregulated and co-localized to βAPP axonal swellings. Pharmacological blockade of NCX1 after injury reduced calpain activation, proteolytic degradation of neurofilaments, βAPP accumulation, distal axon degeneration, and improved hindlimb function.
Interpretation: Our data demonstrate a major role for secondary axotomy in peripheral nerve stretch injury and identify NCX1 as a promising therapeutic target to reduce secondary axotomy and improve functional outcome after nerve injury.
期刊介绍:
The Journal of the Peripheral Nervous System is the official journal of the Peripheral Nerve Society. Founded in 1996, it is the scientific journal of choice for clinicians, clinical scientists and basic neuroscientists interested in all aspects of biology and clinical research of peripheral nervous system disorders.
The Journal of the Peripheral Nervous System is a peer-reviewed journal that publishes high quality articles on cell and molecular biology, genomics, neuropathic pain, clinical research, trials, and unique case reports on inherited and acquired peripheral neuropathies.
Original articles are organized according to the topic in one of four specific areas: Mechanisms of Disease, Genetics, Clinical Research, and Clinical Trials.
The journal also publishes regular review papers on hot topics and Special Issues on basic, clinical, or assembled research in the field of peripheral nervous system disorders. Authors interested in contributing a review-type article or a Special Issue should contact the Editorial Office to discuss the scope of the proposed article with the Editor-in-Chief.