Xiaohan Zhu, Ye Wang, Zeyu Fang, Lei Cheng, Jianlong Li
{"title":"深海战略部署:利用三维声学地图优化水下传感器的布置原则。","authors":"Xiaohan Zhu, Ye Wang, Zeyu Fang, Lei Cheng, Jianlong Li","doi":"10.1121/10.0032456","DOIUrl":null,"url":null,"abstract":"<p><p>Underwater acoustic sensors are vital for monitoring marine environments and detecting targets, but their optimal placement presents challenges, particularly in deep-sea environments. This paper addresses the question of determining the optimal sensor placement in a specific ocean region through a principled optimization approach. While previous studies mainly utilized heuristic algorithms without exploiting problem-specific structures, this work explores leveraging the complex three-dimensional acoustic environment through principled modeling and tailored optimization. Specifically, intricate three-dimensional multi-directional acoustic maps are constructed for each sensor. Based on these maps, the sensor placement problem is then cast as an integer linear programming, allowing the study to leverage established theoretical results from operations research. Additionally, an alternative algorithm with its performance indicator is presented to find near-optimal solutions efficiently and can empirically reach over 99% coverage of the optimal solution. Experimental results using real-life data from the South China Sea demonstrate the effectiveness of the proposed approach in achieving much larger detection coverage compared to random and empirical strategies. Notably, the alternative fast algorithm approaches the optimal solution in significantly less time. Furthermore, experiments show that any further simplification of this approach leads to the performance degradation.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic deployment in the deep: Principled underwater sensor placement optimization with three-dimensional acoustic map.\",\"authors\":\"Xiaohan Zhu, Ye Wang, Zeyu Fang, Lei Cheng, Jianlong Li\",\"doi\":\"10.1121/10.0032456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Underwater acoustic sensors are vital for monitoring marine environments and detecting targets, but their optimal placement presents challenges, particularly in deep-sea environments. This paper addresses the question of determining the optimal sensor placement in a specific ocean region through a principled optimization approach. While previous studies mainly utilized heuristic algorithms without exploiting problem-specific structures, this work explores leveraging the complex three-dimensional acoustic environment through principled modeling and tailored optimization. Specifically, intricate three-dimensional multi-directional acoustic maps are constructed for each sensor. Based on these maps, the sensor placement problem is then cast as an integer linear programming, allowing the study to leverage established theoretical results from operations research. Additionally, an alternative algorithm with its performance indicator is presented to find near-optimal solutions efficiently and can empirically reach over 99% coverage of the optimal solution. Experimental results using real-life data from the South China Sea demonstrate the effectiveness of the proposed approach in achieving much larger detection coverage compared to random and empirical strategies. Notably, the alternative fast algorithm approaches the optimal solution in significantly less time. Furthermore, experiments show that any further simplification of this approach leads to the performance degradation.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0032456\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0032456","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Strategic deployment in the deep: Principled underwater sensor placement optimization with three-dimensional acoustic map.
Underwater acoustic sensors are vital for monitoring marine environments and detecting targets, but their optimal placement presents challenges, particularly in deep-sea environments. This paper addresses the question of determining the optimal sensor placement in a specific ocean region through a principled optimization approach. While previous studies mainly utilized heuristic algorithms without exploiting problem-specific structures, this work explores leveraging the complex three-dimensional acoustic environment through principled modeling and tailored optimization. Specifically, intricate three-dimensional multi-directional acoustic maps are constructed for each sensor. Based on these maps, the sensor placement problem is then cast as an integer linear programming, allowing the study to leverage established theoretical results from operations research. Additionally, an alternative algorithm with its performance indicator is presented to find near-optimal solutions efficiently and can empirically reach over 99% coverage of the optimal solution. Experimental results using real-life data from the South China Sea demonstrate the effectiveness of the proposed approach in achieving much larger detection coverage compared to random and empirical strategies. Notably, the alternative fast algorithm approaches the optimal solution in significantly less time. Furthermore, experiments show that any further simplification of this approach leads to the performance degradation.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.