棕榈油酸酯可防止脂多糖诱导的炎症和炎症体活性。

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Prakash Kumar Sahoo, Aiswariya Ravi, Baolong Liu, Jiujiu Yu, Sathish Kumar Natarajan
{"title":"棕榈油酸酯可防止脂多糖诱导的炎症和炎症体活性。","authors":"Prakash Kumar Sahoo, Aiswariya Ravi, Baolong Liu, Jiujiu Yu, Sathish Kumar Natarajan","doi":"10.1016/j.jlr.2024.100672","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is part of natural immune defense mechanism against any form of infection or injury. However, prolonged inflammation could perturb cell homeostasis and contribute to the development of metabolic and inflammatory diseases, including maternal obesity, diabetes, cardiovascular diseases, and metabolic dysfunction-associated steatotic liver diseases (MASLD). Polyunsaturated fatty acids have been shown to mitigate inflammatory response by generating specialized proresolving lipid mediators, which take part in resolution of inflammation. Similarly here, we show that palmitoleate, an omega-7 monounsaturated fatty acid exerts anti-inflammatory properties in response to lipopolysaccharide (LPS)-mediated inflammation. Exposure of bone marrow-derived macrophages (BMDMs) to LPS or TNFα induces robust increase in the expression of proinflammatory cytokines and supplementation of palmitoleate inhibited LPS-mediated upregulation of proinflammatory cytokines. We also observed that palmitoleate was able to block LPS + ATP-induced inflammasome activation mediated cleavage of procaspase 1 and prointerleukin-1β. Further, treatment of palmitoleate protects against LPS-induced inflammation in human THP-1-derived macrophages and trophoblasts. Coexposure of LPS and palmitate (saturated free fatty acid) induces inflammasome and cell death in BMDMs, however, treatment of palmitoleate blocked LPS and palmitate-induced cell death in BMDMs. Further, LPS and palmitate together results in the activation of mitogen-activated protein kinases and pretreatment of palmitoleate inhibited the activation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B in BMDMs. In conclusion, palmitoleate shows anti-inflammatory properties against LPS-induced inflammation and LPS + palmitate/ATP-induced inflammasome activity and cell death.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100672"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Palmitoleate protects against lipopolysaccharide-induced inflammation and inflammasome activity.\",\"authors\":\"Prakash Kumar Sahoo, Aiswariya Ravi, Baolong Liu, Jiujiu Yu, Sathish Kumar Natarajan\",\"doi\":\"10.1016/j.jlr.2024.100672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammation is part of natural immune defense mechanism against any form of infection or injury. However, prolonged inflammation could perturb cell homeostasis and contribute to the development of metabolic and inflammatory diseases, including maternal obesity, diabetes, cardiovascular diseases, and metabolic dysfunction-associated steatotic liver diseases (MASLD). Polyunsaturated fatty acids have been shown to mitigate inflammatory response by generating specialized proresolving lipid mediators, which take part in resolution of inflammation. Similarly here, we show that palmitoleate, an omega-7 monounsaturated fatty acid exerts anti-inflammatory properties in response to lipopolysaccharide (LPS)-mediated inflammation. Exposure of bone marrow-derived macrophages (BMDMs) to LPS or TNFα induces robust increase in the expression of proinflammatory cytokines and supplementation of palmitoleate inhibited LPS-mediated upregulation of proinflammatory cytokines. We also observed that palmitoleate was able to block LPS + ATP-induced inflammasome activation mediated cleavage of procaspase 1 and prointerleukin-1β. Further, treatment of palmitoleate protects against LPS-induced inflammation in human THP-1-derived macrophages and trophoblasts. Coexposure of LPS and palmitate (saturated free fatty acid) induces inflammasome and cell death in BMDMs, however, treatment of palmitoleate blocked LPS and palmitate-induced cell death in BMDMs. Further, LPS and palmitate together results in the activation of mitogen-activated protein kinases and pretreatment of palmitoleate inhibited the activation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B in BMDMs. In conclusion, palmitoleate shows anti-inflammatory properties against LPS-induced inflammation and LPS + palmitate/ATP-induced inflammasome activity and cell death.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100672\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100672\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100672","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

炎症是抵御任何形式感染或损伤的天然免疫防御机制的一部分。然而,长期的炎症会扰乱细胞的平衡,导致代谢性和炎症性疾病的发生,包括孕产妇肥胖症、糖尿病、心血管疾病和代谢功能障碍相关的脂肪肝。研究表明,多不饱和脂肪酸能产生专门的促进炎症消解的脂质介质,从而减轻炎症反应。在这里,我们发现棕榈油酸(一种欧米伽-7 单不饱和脂肪酸)在脂多糖(LPS)介导的炎症反应中具有抗炎特性。将骨髓衍生巨噬细胞(BMDMs)暴露于 LPS 或 TNFα 会诱导促炎细胞因子的表达大量增加,而补充棕榈油酸盐可抑制 LPS 介导的促炎细胞因子的上调。我们还观察到,棕榈油酸酯能够阻断 LPS+ATP 诱导的炎性体激活介导的原天冬酶 1 和原白细胞介素(IL)-1β 的裂解。此外,棕榈油酸盐还能保护人 THP-1 巨噬细胞和滋养细胞免受 LPS 诱导的炎症。同时暴露于 LPS 和棕榈酸酯(饱和游离脂肪酸)会诱导 BMDMs 中的炎性体和细胞死亡,然而,棕榈油酸酯可阻止 LPS 和棕榈酸酯诱导的 BMDMs 细胞死亡。此外,LPS 和棕榈酸酯共同导致丝裂原活化蛋白激酶(MAPK)的活化,而棕榈酸酯的预处理抑制了 BMDMs 中 MAPK 的活化和核因子卡巴 B(NF-kB)的核转位。总之,棕榈油酸酯对 LPS 诱导的炎症和 LPS+palmitate/ATP 诱导的炎性体活性和细胞死亡具有抗炎作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Palmitoleate protects against lipopolysaccharide-induced inflammation and inflammasome activity.

Inflammation is part of natural immune defense mechanism against any form of infection or injury. However, prolonged inflammation could perturb cell homeostasis and contribute to the development of metabolic and inflammatory diseases, including maternal obesity, diabetes, cardiovascular diseases, and metabolic dysfunction-associated steatotic liver diseases (MASLD). Polyunsaturated fatty acids have been shown to mitigate inflammatory response by generating specialized proresolving lipid mediators, which take part in resolution of inflammation. Similarly here, we show that palmitoleate, an omega-7 monounsaturated fatty acid exerts anti-inflammatory properties in response to lipopolysaccharide (LPS)-mediated inflammation. Exposure of bone marrow-derived macrophages (BMDMs) to LPS or TNFα induces robust increase in the expression of proinflammatory cytokines and supplementation of palmitoleate inhibited LPS-mediated upregulation of proinflammatory cytokines. We also observed that palmitoleate was able to block LPS + ATP-induced inflammasome activation mediated cleavage of procaspase 1 and prointerleukin-1β. Further, treatment of palmitoleate protects against LPS-induced inflammation in human THP-1-derived macrophages and trophoblasts. Coexposure of LPS and palmitate (saturated free fatty acid) induces inflammasome and cell death in BMDMs, however, treatment of palmitoleate blocked LPS and palmitate-induced cell death in BMDMs. Further, LPS and palmitate together results in the activation of mitogen-activated protein kinases and pretreatment of palmitoleate inhibited the activation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B in BMDMs. In conclusion, palmitoleate shows anti-inflammatory properties against LPS-induced inflammation and LPS + palmitate/ATP-induced inflammasome activity and cell death.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信