Sana Khanum, Shakti Gupta, Mano R Maurya, Rubesh Raja, Lina Aboulmouna, Shankar Subramaniam, Doraiswami Ramkrishna
{"title":"利用控制论框架模拟巨噬细胞中二十烷类化合物代谢过程中的酶竞争。","authors":"Sana Khanum, Shakti Gupta, Mano R Maurya, Rubesh Raja, Lina Aboulmouna, Shankar Subramaniam, Doraiswami Ramkrishna","doi":"10.1016/j.jlr.2024.100666","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular metabolism is a complex process involving the consumption and production of metabolites, as well as the regulation of enzyme synthesis and activity. Modeling of metabolic processes is important to understand the underlying mechanisms, with a wide range of applications in metabolic engineering and health sciences. Cybernetic modeling is a powerful technique that accounts for unknown intricate regulatory mechanisms in complex cellular processes. It models regulation as goal-oriented, where the levels and activities of enzymes are modulated by the cybernetic control variables to achieve the cybernetic objective. This study employed cybernetic model to study the enzyme competition between arachidonic acid (AA) and eicosapentaenoic acid (EPA) metabolism in murine macrophages. AA and EPA compete for the shared enzyme cyclooxygenase (COX). Upon external stimuli, AA produces pro-inflammatory 2-series prostaglandins (PGs) and EPA metabolizes to anti-inflammatory 3-series PGs, where pro- and anti- inflammatory responses are necessary for homeostasis. The cybernetic model adequately captured the experimental data for control and EPA-supplemented conditions. The model is validated by performing an F-test, conducting leave-one-out-metabolite cross-validation, and predicting an unseen experimental condition. The cybernetic variables provide insights into the competition between AA and EPA for the COX enzyme. Predictions from our model suggest that the system undergoes a switch from a predominantly pro-inflammatory state in the control to an anti-inflammatory state with EPA-supplementation. The model can also be used to analytically determine the AA and EPA concentrations required for the switch to occur. The quantitative outcomes enhance understanding of pro- and anti-inflammatory metabolism in RAW 264.7 macrophages.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100666"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling enzyme competition in Eicosanoid metabolism in macrophage cells using a cybernetic framework.\",\"authors\":\"Sana Khanum, Shakti Gupta, Mano R Maurya, Rubesh Raja, Lina Aboulmouna, Shankar Subramaniam, Doraiswami Ramkrishna\",\"doi\":\"10.1016/j.jlr.2024.100666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular metabolism is a complex process involving the consumption and production of metabolites, as well as the regulation of enzyme synthesis and activity. Modeling of metabolic processes is important to understand the underlying mechanisms, with a wide range of applications in metabolic engineering and health sciences. Cybernetic modeling is a powerful technique that accounts for unknown intricate regulatory mechanisms in complex cellular processes. It models regulation as goal-oriented, where the levels and activities of enzymes are modulated by the cybernetic control variables to achieve the cybernetic objective. This study employed cybernetic model to study the enzyme competition between arachidonic acid (AA) and eicosapentaenoic acid (EPA) metabolism in murine macrophages. AA and EPA compete for the shared enzyme cyclooxygenase (COX). Upon external stimuli, AA produces pro-inflammatory 2-series prostaglandins (PGs) and EPA metabolizes to anti-inflammatory 3-series PGs, where pro- and anti- inflammatory responses are necessary for homeostasis. The cybernetic model adequately captured the experimental data for control and EPA-supplemented conditions. The model is validated by performing an F-test, conducting leave-one-out-metabolite cross-validation, and predicting an unseen experimental condition. The cybernetic variables provide insights into the competition between AA and EPA for the COX enzyme. Predictions from our model suggest that the system undergoes a switch from a predominantly pro-inflammatory state in the control to an anti-inflammatory state with EPA-supplementation. The model can also be used to analytically determine the AA and EPA concentrations required for the switch to occur. The quantitative outcomes enhance understanding of pro- and anti-inflammatory metabolism in RAW 264.7 macrophages.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100666\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100666\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100666","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
细胞代谢是一个复杂的过程,涉及代谢物的消耗和产生,以及酶的合成和活性调控。新陈代谢过程的建模对于了解其基本机制非常重要,在新陈代谢工程和健康科学领域有着广泛的应用。控制论建模是一种强大的技术,可以解释复杂细胞过程中未知的复杂调控机制。它以目标为导向建立调控模型,通过控制论控制变量调节酶的水平和活性,以实现控制论目标。本研究采用控制论模型研究了小鼠巨噬细胞中花生四烯酸(AA)和二十碳五烯酸(EPA)代谢之间的酶竞争。AA 和 EPA 竞争共用的环氧化酶(COX)。在外界刺激下,AA 产生促炎的 2 系列前列腺素(PGs),而 EPA 则代谢为抗炎的 3 系列前列腺素(PGs)。控制论模型充分捕捉了对照组和 EPA 补充组的实验数据。该模型通过进行 F 检验、留空代谢物交叉验证和预测未见的实验条件进行了验证。控制论变量为了解 AA 和 EPA 对 COX 酶的竞争提供了见解。我们的模型预测表明,该系统会从对照组的主要促炎状态切换到补充 EPA 后的抗炎状态。该模型还可用于分析确定发生转换所需的 AA 和 EPA 浓度。定量结果加深了人们对 RAW 264.7 巨噬细胞促炎和抗炎代谢的理解。
Modeling enzyme competition in Eicosanoid metabolism in macrophage cells using a cybernetic framework.
Cellular metabolism is a complex process involving the consumption and production of metabolites, as well as the regulation of enzyme synthesis and activity. Modeling of metabolic processes is important to understand the underlying mechanisms, with a wide range of applications in metabolic engineering and health sciences. Cybernetic modeling is a powerful technique that accounts for unknown intricate regulatory mechanisms in complex cellular processes. It models regulation as goal-oriented, where the levels and activities of enzymes are modulated by the cybernetic control variables to achieve the cybernetic objective. This study employed cybernetic model to study the enzyme competition between arachidonic acid (AA) and eicosapentaenoic acid (EPA) metabolism in murine macrophages. AA and EPA compete for the shared enzyme cyclooxygenase (COX). Upon external stimuli, AA produces pro-inflammatory 2-series prostaglandins (PGs) and EPA metabolizes to anti-inflammatory 3-series PGs, where pro- and anti- inflammatory responses are necessary for homeostasis. The cybernetic model adequately captured the experimental data for control and EPA-supplemented conditions. The model is validated by performing an F-test, conducting leave-one-out-metabolite cross-validation, and predicting an unseen experimental condition. The cybernetic variables provide insights into the competition between AA and EPA for the COX enzyme. Predictions from our model suggest that the system undergoes a switch from a predominantly pro-inflammatory state in the control to an anti-inflammatory state with EPA-supplementation. The model can also be used to analytically determine the AA and EPA concentrations required for the switch to occur. The quantitative outcomes enhance understanding of pro- and anti-inflammatory metabolism in RAW 264.7 macrophages.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.