从噪声到知识:基于扩散概率模型的基因调控网络神经推断。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Journal of Computational Biology Pub Date : 2024-11-01 Epub Date: 2024-10-10 DOI:10.1089/cmb.2024.0607
Hao Zhu, Donna Slonim
{"title":"从噪声到知识:基于扩散概率模型的基因调控网络神经推断。","authors":"Hao Zhu, Donna Slonim","doi":"10.1089/cmb.2024.0607","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding gene regulatory networks (GRNs) is crucial for elucidating cellular mechanisms and advancing therapeutic interventions. Original methods for GRN inference from bulk expression data often struggled with the high dimensionality and inherent noise in the data. Here we introduce RegDiffusion, a new class of Denoising Diffusion Probabilistic Models focusing on the regulatory effects among feature variables. RegDiffusion introduces Gaussian noise to the input data following a diffusion schedule and uses a neural network with a parameterized adjacency matrix to predict the added noise. We show that using this process, GRNs can be learned effectively with a surprisingly simple model architecture. In our benchmark experiments, RegDiffusion shows superior performance compared to several baseline methods in multiple datasets. We also demonstrate that RegDiffusion can infer biologically meaningful regulatory networks from real-world single-cell data sets with over 15,000 genes in under 5 minutes. This work not only introduces a fresh perspective on GRN inference but also highlights the promising capacity of diffusion-based models in the area of single-cell analysis. The RegDiffusion software package and experiment data are available at https://github.com/TuftsBCB/RegDiffusion.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"1087-1103"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Noise to Knowledge: Diffusion Probabilistic Model-Based Neural Inference of Gene Regulatory Networks.\",\"authors\":\"Hao Zhu, Donna Slonim\",\"doi\":\"10.1089/cmb.2024.0607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding gene regulatory networks (GRNs) is crucial for elucidating cellular mechanisms and advancing therapeutic interventions. Original methods for GRN inference from bulk expression data often struggled with the high dimensionality and inherent noise in the data. Here we introduce RegDiffusion, a new class of Denoising Diffusion Probabilistic Models focusing on the regulatory effects among feature variables. RegDiffusion introduces Gaussian noise to the input data following a diffusion schedule and uses a neural network with a parameterized adjacency matrix to predict the added noise. We show that using this process, GRNs can be learned effectively with a surprisingly simple model architecture. In our benchmark experiments, RegDiffusion shows superior performance compared to several baseline methods in multiple datasets. We also demonstrate that RegDiffusion can infer biologically meaningful regulatory networks from real-world single-cell data sets with over 15,000 genes in under 5 minutes. This work not only introduces a fresh perspective on GRN inference but also highlights the promising capacity of diffusion-based models in the area of single-cell analysis. The RegDiffusion software package and experiment data are available at https://github.com/TuftsBCB/RegDiffusion.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"1087-1103\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0607\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0607","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

了解基因调控网络(GRN)对于阐明细胞机制和推进治疗干预至关重要。从大量表达数据中推断基因调控网络的原始方法往往难以应对数据的高维度和固有噪声。在这里,我们引入了 RegDiffusion,这是一类新的去噪扩散概率模型,侧重于特征变量之间的调控效应。RegDiffusion 按照扩散时间表向输入数据引入高斯噪声,并使用带有参数化邻接矩阵的神经网络来预测添加的噪声。我们的研究表明,利用这一过程,GRN 可以通过令人惊讶的简单模型架构进行有效学习。在我们的基准实验中,RegDiffusion 在多个数据集上的表现优于几种基准方法。我们还证明,RegDiffusion 能在 5 分钟内从包含 15000 多个基因的实际单细胞数据集中推断出具有生物学意义的调控网络。这项工作不仅为GRN推断引入了一个全新的视角,而且凸显了基于扩散的模型在单细胞分析领域大有可为的能力。RegDiffusion 软件包和实验数据见 https://github.com/TuftsBCB/RegDiffusion。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Noise to Knowledge: Diffusion Probabilistic Model-Based Neural Inference of Gene Regulatory Networks.

Understanding gene regulatory networks (GRNs) is crucial for elucidating cellular mechanisms and advancing therapeutic interventions. Original methods for GRN inference from bulk expression data often struggled with the high dimensionality and inherent noise in the data. Here we introduce RegDiffusion, a new class of Denoising Diffusion Probabilistic Models focusing on the regulatory effects among feature variables. RegDiffusion introduces Gaussian noise to the input data following a diffusion schedule and uses a neural network with a parameterized adjacency matrix to predict the added noise. We show that using this process, GRNs can be learned effectively with a surprisingly simple model architecture. In our benchmark experiments, RegDiffusion shows superior performance compared to several baseline methods in multiple datasets. We also demonstrate that RegDiffusion can infer biologically meaningful regulatory networks from real-world single-cell data sets with over 15,000 genes in under 5 minutes. This work not only introduces a fresh perspective on GRN inference but also highlights the promising capacity of diffusion-based models in the area of single-cell analysis. The RegDiffusion software package and experiment data are available at https://github.com/TuftsBCB/RegDiffusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信