Lin Zhang, Zhihan Xu, Yan Feng, Zhijie Pan, Qinyao Li, Ai Wang, Yanfei Hu, Xueqian Xie
{"title":"基于肿瘤周围 CT 放射组学和语义特征的胸腺上皮肿瘤风险分层。","authors":"Lin Zhang, Zhihan Xu, Yan Feng, Zhijie Pan, Qinyao Li, Ai Wang, Yanfei Hu, Xueqian Xie","doi":"10.1186/s13244-024-01798-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To develop and validate nomograms combining radiomics and semantic features to identify the invasiveness and histopathological risk stratification of thymic epithelial tumors (TET) using contrast-enhanced CT.</p><p><strong>Methods: </strong>This retrospective multi-center study included 224 consecutive cases. For each case, 6764 intratumor and peritumor radiomics features and 31 semantic features were collected. Multi-feature selections and decision tree models were performed on radiomics features and semantic features separately to select the most important features for Masaoka-Koga staging and WHO classification. The selected features were then combined to create nomograms for the two systems. The performance of the radiomics model, semantic model, and combined model was evaluated using the area under the receiver operating characteristic curves (AUCs).</p><p><strong>Results: </strong>One hundred eighty-seven cases (56.5 years ± 12.3, 101 men) were included, with 62 cases as the external test set. For Masaoka-Koga staging, the combined model, which incorporated five peritumor radiomics features and four semantic features, showed an AUC of 0.958 (95% CI: 0.912-1.000) in distinguishing between early-stage (stage I/II) and advanced-stage (III/IV) TET in the external test set. For WHO classification, the combined model incorporating five peritumor radiomics features and two semantic features showed an AUC of 0.857 (0.760-0.955) in differentiating low-risk (type A/AB/B1) and high-risk (B2/B3/C) TET. The combined models showed the most effective predictive performance, while the semantic models exhibited comparable performance to the radiomics models in both systems (p > 0.05).</p><p><strong>Conclusion: </strong>The nomograms combining peritumor radiomics features and semantic features could help in increasing the accuracy of grading invasiveness and risk stratification of TET.</p><p><strong>Critical relevance statement: </strong>Peripheral invasion and histopathological type are major determinants of treatment and prognosis of TET. The integration of peritumoral radiomics features and semantic features into nomograms may enhance the accuracy of grading invasiveness and risk stratification of TET.</p><p><strong>Key points: </strong>Peritumor region of TET may suggest histopathological and invasive risk. Peritumor radiomic and semantic features allow classification by Masaoka-Koga staging (AUC: 0.958). Peritumor radiomic and semantic features enable the classification of histopathological risk (AUC: 0.857).</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"15 1","pages":"253"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496418/pdf/","citationCount":"0","resultStr":"{\"title\":\"Risk stratification of thymic epithelial tumors based on peritumor CT radiomics and semantic features.\",\"authors\":\"Lin Zhang, Zhihan Xu, Yan Feng, Zhijie Pan, Qinyao Li, Ai Wang, Yanfei Hu, Xueqian Xie\",\"doi\":\"10.1186/s13244-024-01798-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To develop and validate nomograms combining radiomics and semantic features to identify the invasiveness and histopathological risk stratification of thymic epithelial tumors (TET) using contrast-enhanced CT.</p><p><strong>Methods: </strong>This retrospective multi-center study included 224 consecutive cases. For each case, 6764 intratumor and peritumor radiomics features and 31 semantic features were collected. Multi-feature selections and decision tree models were performed on radiomics features and semantic features separately to select the most important features for Masaoka-Koga staging and WHO classification. The selected features were then combined to create nomograms for the two systems. The performance of the radiomics model, semantic model, and combined model was evaluated using the area under the receiver operating characteristic curves (AUCs).</p><p><strong>Results: </strong>One hundred eighty-seven cases (56.5 years ± 12.3, 101 men) were included, with 62 cases as the external test set. For Masaoka-Koga staging, the combined model, which incorporated five peritumor radiomics features and four semantic features, showed an AUC of 0.958 (95% CI: 0.912-1.000) in distinguishing between early-stage (stage I/II) and advanced-stage (III/IV) TET in the external test set. For WHO classification, the combined model incorporating five peritumor radiomics features and two semantic features showed an AUC of 0.857 (0.760-0.955) in differentiating low-risk (type A/AB/B1) and high-risk (B2/B3/C) TET. The combined models showed the most effective predictive performance, while the semantic models exhibited comparable performance to the radiomics models in both systems (p > 0.05).</p><p><strong>Conclusion: </strong>The nomograms combining peritumor radiomics features and semantic features could help in increasing the accuracy of grading invasiveness and risk stratification of TET.</p><p><strong>Critical relevance statement: </strong>Peripheral invasion and histopathological type are major determinants of treatment and prognosis of TET. The integration of peritumoral radiomics features and semantic features into nomograms may enhance the accuracy of grading invasiveness and risk stratification of TET.</p><p><strong>Key points: </strong>Peritumor region of TET may suggest histopathological and invasive risk. Peritumor radiomic and semantic features allow classification by Masaoka-Koga staging (AUC: 0.958). Peritumor radiomic and semantic features enable the classification of histopathological risk (AUC: 0.857).</p>\",\"PeriodicalId\":13639,\"journal\":{\"name\":\"Insights into Imaging\",\"volume\":\"15 1\",\"pages\":\"253\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insights into Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13244-024-01798-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-024-01798-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Risk stratification of thymic epithelial tumors based on peritumor CT radiomics and semantic features.
Objectives: To develop and validate nomograms combining radiomics and semantic features to identify the invasiveness and histopathological risk stratification of thymic epithelial tumors (TET) using contrast-enhanced CT.
Methods: This retrospective multi-center study included 224 consecutive cases. For each case, 6764 intratumor and peritumor radiomics features and 31 semantic features were collected. Multi-feature selections and decision tree models were performed on radiomics features and semantic features separately to select the most important features for Masaoka-Koga staging and WHO classification. The selected features were then combined to create nomograms for the two systems. The performance of the radiomics model, semantic model, and combined model was evaluated using the area under the receiver operating characteristic curves (AUCs).
Results: One hundred eighty-seven cases (56.5 years ± 12.3, 101 men) were included, with 62 cases as the external test set. For Masaoka-Koga staging, the combined model, which incorporated five peritumor radiomics features and four semantic features, showed an AUC of 0.958 (95% CI: 0.912-1.000) in distinguishing between early-stage (stage I/II) and advanced-stage (III/IV) TET in the external test set. For WHO classification, the combined model incorporating five peritumor radiomics features and two semantic features showed an AUC of 0.857 (0.760-0.955) in differentiating low-risk (type A/AB/B1) and high-risk (B2/B3/C) TET. The combined models showed the most effective predictive performance, while the semantic models exhibited comparable performance to the radiomics models in both systems (p > 0.05).
Conclusion: The nomograms combining peritumor radiomics features and semantic features could help in increasing the accuracy of grading invasiveness and risk stratification of TET.
Critical relevance statement: Peripheral invasion and histopathological type are major determinants of treatment and prognosis of TET. The integration of peritumoral radiomics features and semantic features into nomograms may enhance the accuracy of grading invasiveness and risk stratification of TET.
Key points: Peritumor region of TET may suggest histopathological and invasive risk. Peritumor radiomic and semantic features allow classification by Masaoka-Koga staging (AUC: 0.958). Peritumor radiomic and semantic features enable the classification of histopathological risk (AUC: 0.857).
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.