Hamza Hanieh, Manal A Alfwuaires, Maisa S Abduh, Alyaa Abdrabu, Nidal A Qinna, Abdullah M Alzahrani
{"title":"二氢地西泮通过抑制 TLR4/NF-κB/IRF3 信号通路对内毒素休克的保护作用","authors":"Hamza Hanieh, Manal A Alfwuaires, Maisa S Abduh, Alyaa Abdrabu, Nidal A Qinna, Abdullah M Alzahrani","doi":"10.1007/s10753-024-02160-w","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis and septic shock are life-threatening systemic inflammatory conditions and among the most frequent causes of morbidity and mortality globally. Preclinical evidence has identified a number of diazepine-based compounds with therapeutic potential in inflammatory diseases. However, the potential anti-inflammatory properties of diazepines in the overwhelming immune response during sepsis have been rarely examined. Thus, the current study aimed to identify a new diazepine compound with therapeutic potential in sepsis. Assessing the inflammatory response of macrophages to Lipopolysaccharides (LPS) in vitro identified 2-[7-(trifluoromethyl)-2,3-dihydro-1H-1,4-diazepin-5-yl]phenol (2-TDDP) as a potential anti-inflammatory agent. It reduced secretion of Interleukin-1β (IL-1β), IL-6, IL-12p70, IL-18, Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), IFN-β, and increased the secretion of IL-10. In a mouse model of LPS-induced endotoxin shock, 2-TDDP reduced mortality and attenuated inflammation-induced tissue injury in the spleen, liver, kidney, and lung. This was accompanied by reduced serum levels of IL-1β, IL-6, IL-12p70, TNF-α, IFN-γ, IFN-β, and increased levels of IL-10. Importantly, 2-TDDP suppressed the Toll-like receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) and TLR4/Interferon regulatory factor 3 (IRF3) signaling pathways through a reduction in the expression of TLR4, Myeloid differentiation primary response 88 (MyD88), P65, and TNF receptor-associated factor 3 (Traf3). Moreover, 2-TDDP suppressed the expression of CD86, Programmed death-ligand 1 (PD-L1) and C5a receptor (C5aR), but not Major histocompatibility complex II (MHCII). Analysis of splenic lymphocyte populations revealed a decrease in the number of CD4<sup>+</sup>, CD8<sup>+</sup>, and B cells. Collectively, these findings introduced the dihydrodiazepine 2-TDDP as a new anti-inflammatory agent with potent therapeutic potential in endotoxin shock, paving an avenue for future clinical application.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effects of a Dihydrodiazepine Against Endotoxin Shock Through Suppression of TLR4/NF-κB/IRF3 Signaling Pathways.\",\"authors\":\"Hamza Hanieh, Manal A Alfwuaires, Maisa S Abduh, Alyaa Abdrabu, Nidal A Qinna, Abdullah M Alzahrani\",\"doi\":\"10.1007/s10753-024-02160-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis and septic shock are life-threatening systemic inflammatory conditions and among the most frequent causes of morbidity and mortality globally. Preclinical evidence has identified a number of diazepine-based compounds with therapeutic potential in inflammatory diseases. However, the potential anti-inflammatory properties of diazepines in the overwhelming immune response during sepsis have been rarely examined. Thus, the current study aimed to identify a new diazepine compound with therapeutic potential in sepsis. Assessing the inflammatory response of macrophages to Lipopolysaccharides (LPS) in vitro identified 2-[7-(trifluoromethyl)-2,3-dihydro-1H-1,4-diazepin-5-yl]phenol (2-TDDP) as a potential anti-inflammatory agent. It reduced secretion of Interleukin-1β (IL-1β), IL-6, IL-12p70, IL-18, Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), IFN-β, and increased the secretion of IL-10. In a mouse model of LPS-induced endotoxin shock, 2-TDDP reduced mortality and attenuated inflammation-induced tissue injury in the spleen, liver, kidney, and lung. This was accompanied by reduced serum levels of IL-1β, IL-6, IL-12p70, TNF-α, IFN-γ, IFN-β, and increased levels of IL-10. Importantly, 2-TDDP suppressed the Toll-like receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) and TLR4/Interferon regulatory factor 3 (IRF3) signaling pathways through a reduction in the expression of TLR4, Myeloid differentiation primary response 88 (MyD88), P65, and TNF receptor-associated factor 3 (Traf3). Moreover, 2-TDDP suppressed the expression of CD86, Programmed death-ligand 1 (PD-L1) and C5a receptor (C5aR), but not Major histocompatibility complex II (MHCII). Analysis of splenic lymphocyte populations revealed a decrease in the number of CD4<sup>+</sup>, CD8<sup>+</sup>, and B cells. Collectively, these findings introduced the dihydrodiazepine 2-TDDP as a new anti-inflammatory agent with potent therapeutic potential in endotoxin shock, paving an avenue for future clinical application.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02160-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02160-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Protective Effects of a Dihydrodiazepine Against Endotoxin Shock Through Suppression of TLR4/NF-κB/IRF3 Signaling Pathways.
Sepsis and septic shock are life-threatening systemic inflammatory conditions and among the most frequent causes of morbidity and mortality globally. Preclinical evidence has identified a number of diazepine-based compounds with therapeutic potential in inflammatory diseases. However, the potential anti-inflammatory properties of diazepines in the overwhelming immune response during sepsis have been rarely examined. Thus, the current study aimed to identify a new diazepine compound with therapeutic potential in sepsis. Assessing the inflammatory response of macrophages to Lipopolysaccharides (LPS) in vitro identified 2-[7-(trifluoromethyl)-2,3-dihydro-1H-1,4-diazepin-5-yl]phenol (2-TDDP) as a potential anti-inflammatory agent. It reduced secretion of Interleukin-1β (IL-1β), IL-6, IL-12p70, IL-18, Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), IFN-β, and increased the secretion of IL-10. In a mouse model of LPS-induced endotoxin shock, 2-TDDP reduced mortality and attenuated inflammation-induced tissue injury in the spleen, liver, kidney, and lung. This was accompanied by reduced serum levels of IL-1β, IL-6, IL-12p70, TNF-α, IFN-γ, IFN-β, and increased levels of IL-10. Importantly, 2-TDDP suppressed the Toll-like receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) and TLR4/Interferon regulatory factor 3 (IRF3) signaling pathways through a reduction in the expression of TLR4, Myeloid differentiation primary response 88 (MyD88), P65, and TNF receptor-associated factor 3 (Traf3). Moreover, 2-TDDP suppressed the expression of CD86, Programmed death-ligand 1 (PD-L1) and C5a receptor (C5aR), but not Major histocompatibility complex II (MHCII). Analysis of splenic lymphocyte populations revealed a decrease in the number of CD4+, CD8+, and B cells. Collectively, these findings introduced the dihydrodiazepine 2-TDDP as a new anti-inflammatory agent with potent therapeutic potential in endotoxin shock, paving an avenue for future clinical application.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.