Jose Arriola-Montenegro, Pornthira Mutirangura, Hassan Akram, Adamantios Tsangaris, Despoina Koukousaki, Michael Tschida, Joel Money, Marinos Kosmopoulos, Mikako Harata, Andrew Hughes, Andras Toth, Tamas Alexy
{"title":"针对心力衰竭患者的无创生物识别监测技术。","authors":"Jose Arriola-Montenegro, Pornthira Mutirangura, Hassan Akram, Adamantios Tsangaris, Despoina Koukousaki, Michael Tschida, Joel Money, Marinos Kosmopoulos, Mikako Harata, Andrew Hughes, Andras Toth, Tamas Alexy","doi":"10.1007/s10741-024-10441-7","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure remains one of the leading causes of mortality and hospitalizations in the US that not only impacts quality of life but also poses a significant public health burden. The majority of affected patients are admitted with signs and symptoms of congestion. Despite the initial enthusiasm, traditional remote monitoring strategies focusing primarily on weight gain failed to improve clinical outcomes. Implantable pulmonary artery pressure sensors provide earlier and actionable data, but most patients would favor forgoing an invasive procedure in favor of an alternative, non-invasive monitoring platform. Several devices utilizing different combinations of multiparameter monitoring to reliably detect congestion have recently been developed and are undergoing testing in the clinical setting. Combining these sensors with the power of artificial intelligence and machine learning has the potential to revolutionize remote patient monitoring and early congestion detection and to facilitate timely interventions by the care team to prevent hospitalization. This manuscript provides an objective review of novel, noninvasive, multiparameter remote monitoring platforms that may be tailored to individual heart failure phenotypes, aiming to improve quality of life and survival.</p>","PeriodicalId":12950,"journal":{"name":"Heart Failure Reviews","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvasive biometric monitoring technologies for patients with heart failure.\",\"authors\":\"Jose Arriola-Montenegro, Pornthira Mutirangura, Hassan Akram, Adamantios Tsangaris, Despoina Koukousaki, Michael Tschida, Joel Money, Marinos Kosmopoulos, Mikako Harata, Andrew Hughes, Andras Toth, Tamas Alexy\",\"doi\":\"10.1007/s10741-024-10441-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure remains one of the leading causes of mortality and hospitalizations in the US that not only impacts quality of life but also poses a significant public health burden. The majority of affected patients are admitted with signs and symptoms of congestion. Despite the initial enthusiasm, traditional remote monitoring strategies focusing primarily on weight gain failed to improve clinical outcomes. Implantable pulmonary artery pressure sensors provide earlier and actionable data, but most patients would favor forgoing an invasive procedure in favor of an alternative, non-invasive monitoring platform. Several devices utilizing different combinations of multiparameter monitoring to reliably detect congestion have recently been developed and are undergoing testing in the clinical setting. Combining these sensors with the power of artificial intelligence and machine learning has the potential to revolutionize remote patient monitoring and early congestion detection and to facilitate timely interventions by the care team to prevent hospitalization. This manuscript provides an objective review of novel, noninvasive, multiparameter remote monitoring platforms that may be tailored to individual heart failure phenotypes, aiming to improve quality of life and survival.</p>\",\"PeriodicalId\":12950,\"journal\":{\"name\":\"Heart Failure Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heart Failure Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10741-024-10441-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart Failure Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10741-024-10441-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Noninvasive biometric monitoring technologies for patients with heart failure.
Heart failure remains one of the leading causes of mortality and hospitalizations in the US that not only impacts quality of life but also poses a significant public health burden. The majority of affected patients are admitted with signs and symptoms of congestion. Despite the initial enthusiasm, traditional remote monitoring strategies focusing primarily on weight gain failed to improve clinical outcomes. Implantable pulmonary artery pressure sensors provide earlier and actionable data, but most patients would favor forgoing an invasive procedure in favor of an alternative, non-invasive monitoring platform. Several devices utilizing different combinations of multiparameter monitoring to reliably detect congestion have recently been developed and are undergoing testing in the clinical setting. Combining these sensors with the power of artificial intelligence and machine learning has the potential to revolutionize remote patient monitoring and early congestion detection and to facilitate timely interventions by the care team to prevent hospitalization. This manuscript provides an objective review of novel, noninvasive, multiparameter remote monitoring platforms that may be tailored to individual heart failure phenotypes, aiming to improve quality of life and survival.
期刊介绍:
Heart Failure Reviews is an international journal which develops links between basic scientists and clinical investigators, creating a unique, interdisciplinary dialogue focused on heart failure, its pathogenesis and treatment. The journal accordingly publishes papers in both basic and clinical research fields. Topics covered include clinical and surgical approaches to therapy, basic pharmacology, biochemistry, molecular biology, pathology, and electrophysiology.
The reviews are comprehensive, expanding the reader''s knowledge base and awareness of current research and new findings in this rapidly growing field of cardiovascular medicine. All reviews are thoroughly peer-reviewed before publication.