{"title":"三阴性乳腺癌外泌体中的 FOXM1 通过激活巨噬细胞中的 IDO1 转录来抑制铁变态反应并诱导肿瘤相关巨噬细胞的 M2 极化,从而促进癌症进展。","authors":"Tielin Wang, Yan Zhang, Hong Liu, Jian Wu","doi":"10.1266/ggs.24-00079","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the oncogenic mechanism of FOXM1 in the tumor microenvironment (TME) regarding triple-negative breast cancer (TNBC) promotion, the mRNA and protein levels of target genes in TNBC cells and their exosomes were detected by RT-qPCR and western blot. A co-culture model of TNBC cells and THP-1/M0 macrophages was established to detect the impact of co-culture on FOXM1 expression and the direction of macrophage polarization. A bioinformatics website was used to predict FOXM1 binding sites in the IDO1 promoter, which were further validated using dual-luciferase reporter and chromatin immunoprecipitation assays. Next, after erastin-induced ferroptosis, we conducted cell viability assays, apoptosis assays and other experiments to investigate whether the FOXM1/IDO1 axis regulates M2 macrophage polarization through ferroptosis. We found that FOXM1 was abundant in exosomes derived from TNBC cells, and that TNBC cells upregulated FOXM1 expression in THP-1 cells through exosomes to promote M2 macrophage polarization. Furthermore, FOXM1 upregulated IDO1 in M2-type tumor-associated macrophages (TAMs) by stimulating its transcription. Finally, FOXM1/IDO1 inhibited ferroptosis, promoting M2 macrophage polarization, thereby advancing TNBC progression. In conclusion, FOXM1 carried by TNBC cell-derived exosomes activated IDO1 transcription in TAMs to inhibit ferroptosis, promoting M2 polarization of TAMs and exerting carcinogenic effects.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FOXM1 derived from triple-negative breast cancer exosomes promotes cancer progression by activating IDO1 transcription in macrophages to suppress ferroptosis and induce M2 polarization of tumor-associated macrophages.\",\"authors\":\"Tielin Wang, Yan Zhang, Hong Liu, Jian Wu\",\"doi\":\"10.1266/ggs.24-00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the oncogenic mechanism of FOXM1 in the tumor microenvironment (TME) regarding triple-negative breast cancer (TNBC) promotion, the mRNA and protein levels of target genes in TNBC cells and their exosomes were detected by RT-qPCR and western blot. A co-culture model of TNBC cells and THP-1/M0 macrophages was established to detect the impact of co-culture on FOXM1 expression and the direction of macrophage polarization. A bioinformatics website was used to predict FOXM1 binding sites in the IDO1 promoter, which were further validated using dual-luciferase reporter and chromatin immunoprecipitation assays. Next, after erastin-induced ferroptosis, we conducted cell viability assays, apoptosis assays and other experiments to investigate whether the FOXM1/IDO1 axis regulates M2 macrophage polarization through ferroptosis. We found that FOXM1 was abundant in exosomes derived from TNBC cells, and that TNBC cells upregulated FOXM1 expression in THP-1 cells through exosomes to promote M2 macrophage polarization. Furthermore, FOXM1 upregulated IDO1 in M2-type tumor-associated macrophages (TAMs) by stimulating its transcription. Finally, FOXM1/IDO1 inhibited ferroptosis, promoting M2 macrophage polarization, thereby advancing TNBC progression. In conclusion, FOXM1 carried by TNBC cell-derived exosomes activated IDO1 transcription in TAMs to inhibit ferroptosis, promoting M2 polarization of TAMs and exerting carcinogenic effects.</p>\",\"PeriodicalId\":12690,\"journal\":{\"name\":\"Genes & genetic systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genetic systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1266/ggs.24-00079\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.24-00079","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
探讨FOXM1在肿瘤微环境(TME)中促进三阴性乳腺癌(TNBC)的致癌机制。采用 RT-qPCR 和 Western 印迹法检测 TNBC 细胞及其外泌体中靶基因的 mRNA 和蛋白水平。建立了TNBC细胞和THP-1/M0巨噬细胞的共培养模型,以检测共培养对FOXM1表达和巨噬细胞极化方向的影响。利用生物信息学网站预测了FOXM1与IDO1启动子之间的结合位点,并通过双荧光素酶报告实验和染色质免疫沉淀(ChIP)实验进一步验证了这些结合位点。最后,在厄拉斯汀诱导的铁变态反应后,进行了细胞计数试剂盒-8(CCK-8)、末端脱氧核苷酸转移酶介导的dUTP缺口标记(TUNEL)等实验,研究FOXM1/IDO1轴是否通过铁变态反应调控M2巨噬细胞的极化。研究发现,FOXM1在TNBC细胞的外泌体中高表达,TNBC细胞通过外泌体上调FOXM1在THP-1细胞中的表达,促进M2巨噬细胞极化。此外,FOXM1还通过调节转录上调M2型TAMs中的IDO1。最后,FOXM1/IDO1抑制了铁凋亡,促进了M2巨噬细胞的极化,从而推动了TNBC的进展。总之,来自TNBC细胞外泌体的FOXM1激活了TAMs中IDO1的转录,抑制了铁凋亡,促进了TAMs的M2极化,发挥了致癌作用。
FOXM1 derived from triple-negative breast cancer exosomes promotes cancer progression by activating IDO1 transcription in macrophages to suppress ferroptosis and induce M2 polarization of tumor-associated macrophages.
To explore the oncogenic mechanism of FOXM1 in the tumor microenvironment (TME) regarding triple-negative breast cancer (TNBC) promotion, the mRNA and protein levels of target genes in TNBC cells and their exosomes were detected by RT-qPCR and western blot. A co-culture model of TNBC cells and THP-1/M0 macrophages was established to detect the impact of co-culture on FOXM1 expression and the direction of macrophage polarization. A bioinformatics website was used to predict FOXM1 binding sites in the IDO1 promoter, which were further validated using dual-luciferase reporter and chromatin immunoprecipitation assays. Next, after erastin-induced ferroptosis, we conducted cell viability assays, apoptosis assays and other experiments to investigate whether the FOXM1/IDO1 axis regulates M2 macrophage polarization through ferroptosis. We found that FOXM1 was abundant in exosomes derived from TNBC cells, and that TNBC cells upregulated FOXM1 expression in THP-1 cells through exosomes to promote M2 macrophage polarization. Furthermore, FOXM1 upregulated IDO1 in M2-type tumor-associated macrophages (TAMs) by stimulating its transcription. Finally, FOXM1/IDO1 inhibited ferroptosis, promoting M2 macrophage polarization, thereby advancing TNBC progression. In conclusion, FOXM1 carried by TNBC cell-derived exosomes activated IDO1 transcription in TAMs to inhibit ferroptosis, promoting M2 polarization of TAMs and exerting carcinogenic effects.