{"title":"线粒体功能失调引发的亮德细胞早衰部分参与了 1-硝基芘诱发的睾丸类固醇合成酶下调。","authors":"","doi":"10.1016/j.freeradbiomed.2024.10.291","DOIUrl":null,"url":null,"abstract":"<div><div>Serum testosterone (T) in males has been declining during the past decades. The previous reports found that 1-nitropyrene (1-NP) exposure suppressed testicular T synthesis. The purpose of the current study was to further explore whether premature senescence participates in 1-NP-triggered reduction of testicular T synthesis. Adult male mice were orally exposed to 1-NP (0, 100, and 500 μg/kg) daily for 14 days. Serum and testicular T contents were diminished in 1-NP-administered mice. Mitochondria-located steroidogenic synthases, including StAR, CYP11A1, and 3βHSD1, were downregulated in 1-NP-administered mouse testes and MLTC-1 cells. Mechanistically, 1-NP exposure increased acetylation modification of mitochondrial steroidogenic synthases by inhibiting the enzymatic activity of SIRT3, an NAD<sup>+</sup>-dependent deacetylase. Supplementing NAD <sup>+</sup> precursor and <em>Sirt3</em> overexpression relieved 1-NP-triggered reduction of steroidogenic synthase levels in mouse testes and MLTC-1 cells. By contrast, <em>Sirt3</em> silencing aggravated 1-NP-evoked acetylation and reduction of steroidogenic synthase levels in MLTC-1 cells. Further experiments demonstrated that 1-NP exposure caused mitochondrial malfunction and premature senescence in mouse testes and MLTC-1 cells. Supplementation with mitochondria-directed antioxidant mitoquinone (MitoQ) prevented 1-NP-evoked Leydig cell premature senescence and downregulation of testicular steroidogenic synthases. These results suggest that mitochondrial malfunction-initiated Leydig cell premature senescence may partially participate in 1-NP-evoked reduction of steroidogenic synthase levels in testes.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial malfunction-initiated Leydig cell premature senescence partially participates in 1-nitropyrene-evoked downregulation of steroidogenic synthases in testes\",\"authors\":\"\",\"doi\":\"10.1016/j.freeradbiomed.2024.10.291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Serum testosterone (T) in males has been declining during the past decades. The previous reports found that 1-nitropyrene (1-NP) exposure suppressed testicular T synthesis. The purpose of the current study was to further explore whether premature senescence participates in 1-NP-triggered reduction of testicular T synthesis. Adult male mice were orally exposed to 1-NP (0, 100, and 500 μg/kg) daily for 14 days. Serum and testicular T contents were diminished in 1-NP-administered mice. Mitochondria-located steroidogenic synthases, including StAR, CYP11A1, and 3βHSD1, were downregulated in 1-NP-administered mouse testes and MLTC-1 cells. Mechanistically, 1-NP exposure increased acetylation modification of mitochondrial steroidogenic synthases by inhibiting the enzymatic activity of SIRT3, an NAD<sup>+</sup>-dependent deacetylase. Supplementing NAD <sup>+</sup> precursor and <em>Sirt3</em> overexpression relieved 1-NP-triggered reduction of steroidogenic synthase levels in mouse testes and MLTC-1 cells. By contrast, <em>Sirt3</em> silencing aggravated 1-NP-evoked acetylation and reduction of steroidogenic synthase levels in MLTC-1 cells. Further experiments demonstrated that 1-NP exposure caused mitochondrial malfunction and premature senescence in mouse testes and MLTC-1 cells. Supplementation with mitochondria-directed antioxidant mitoquinone (MitoQ) prevented 1-NP-evoked Leydig cell premature senescence and downregulation of testicular steroidogenic synthases. These results suggest that mitochondrial malfunction-initiated Leydig cell premature senescence may partially participate in 1-NP-evoked reduction of steroidogenic synthase levels in testes.</div></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584924009936\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924009936","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mitochondrial malfunction-initiated Leydig cell premature senescence partially participates in 1-nitropyrene-evoked downregulation of steroidogenic synthases in testes
Serum testosterone (T) in males has been declining during the past decades. The previous reports found that 1-nitropyrene (1-NP) exposure suppressed testicular T synthesis. The purpose of the current study was to further explore whether premature senescence participates in 1-NP-triggered reduction of testicular T synthesis. Adult male mice were orally exposed to 1-NP (0, 100, and 500 μg/kg) daily for 14 days. Serum and testicular T contents were diminished in 1-NP-administered mice. Mitochondria-located steroidogenic synthases, including StAR, CYP11A1, and 3βHSD1, were downregulated in 1-NP-administered mouse testes and MLTC-1 cells. Mechanistically, 1-NP exposure increased acetylation modification of mitochondrial steroidogenic synthases by inhibiting the enzymatic activity of SIRT3, an NAD+-dependent deacetylase. Supplementing NAD + precursor and Sirt3 overexpression relieved 1-NP-triggered reduction of steroidogenic synthase levels in mouse testes and MLTC-1 cells. By contrast, Sirt3 silencing aggravated 1-NP-evoked acetylation and reduction of steroidogenic synthase levels in MLTC-1 cells. Further experiments demonstrated that 1-NP exposure caused mitochondrial malfunction and premature senescence in mouse testes and MLTC-1 cells. Supplementation with mitochondria-directed antioxidant mitoquinone (MitoQ) prevented 1-NP-evoked Leydig cell premature senescence and downregulation of testicular steroidogenic synthases. These results suggest that mitochondrial malfunction-initiated Leydig cell premature senescence may partially participate in 1-NP-evoked reduction of steroidogenic synthase levels in testes.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.