Wenteng Si , Hongchao Wei , Wenzhong Chen , Bin Chen , Yu Zhou , Huaguo Zhang
{"title":"外泌体 microRNA-363 通过抑制 G3BP2 来介导 M1 巨噬细胞对软骨细胞的破坏作用。","authors":"Wenteng Si , Hongchao Wei , Wenzhong Chen , Bin Chen , Yu Zhou , Huaguo Zhang","doi":"10.1016/j.yexcr.2024.114276","DOIUrl":null,"url":null,"abstract":"<div><div>M1 polarization of synovial macrophages contributes to cartilage degeneration and osteoarthritis (OA) development. However, limited knowledge is available about how M1 macrophages affect the biological properties of chondrocytes. This study aimed to explore the role of exosomal microRNAs (miRs) released from M1 macrophages in modulating the proliferation and survival of chondrocytes. Through bioinformatic analysis and experimental validation, we indicated that miR-363 was selectively induced in M1 macrophages (CD68<sup>+</sup>CD80<sup>+</sup>) but not M2 macrophages (CD68<sup>+</sup>CD206<sup>+</sup>). The upregulation of miR-363 in M1 macrophages depended on the activation of STAT1 signaling. Clinically, OA patients had a significantly higher miR-363 level in synovial fluid than control individuals without OA. Functional studies revealed that inhibition of miR-363 blocked the M1 macrophage polarization induced by lipopolysaccharide and IFN-γ. Moreover, exosomal miR-363 released from M1 macrophages significantly suppressed the proliferation and survival and induced inflammatory gene expression in chondrocytes. G3BP2 was identified as a target gene for miR-363 and could be negatively regulated by miR-363. Knockdown of G3BP2 recapitulated the effect of miR-363 overexpression on chondrocytes. Most importantly, enforced expression of G3BP2 attenuated miR-363-induced apoptosis and inflammatory response in chondrocytes. In conclusion, miR-363 plays an indispensable role in M1 macrophage polarization and can be released from M1 macrophages via exosomes to cause chondrocyte injury and inflammation. The miR-363/G3BP2 axis may represent a promising target for the prevention of OA development.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114276"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exosomal microRNA-363 mediates the destructive effect of M1 macrophages on chondrocytes by repressing G3BP2\",\"authors\":\"Wenteng Si , Hongchao Wei , Wenzhong Chen , Bin Chen , Yu Zhou , Huaguo Zhang\",\"doi\":\"10.1016/j.yexcr.2024.114276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>M1 polarization of synovial macrophages contributes to cartilage degeneration and osteoarthritis (OA) development. However, limited knowledge is available about how M1 macrophages affect the biological properties of chondrocytes. This study aimed to explore the role of exosomal microRNAs (miRs) released from M1 macrophages in modulating the proliferation and survival of chondrocytes. Through bioinformatic analysis and experimental validation, we indicated that miR-363 was selectively induced in M1 macrophages (CD68<sup>+</sup>CD80<sup>+</sup>) but not M2 macrophages (CD68<sup>+</sup>CD206<sup>+</sup>). The upregulation of miR-363 in M1 macrophages depended on the activation of STAT1 signaling. Clinically, OA patients had a significantly higher miR-363 level in synovial fluid than control individuals without OA. Functional studies revealed that inhibition of miR-363 blocked the M1 macrophage polarization induced by lipopolysaccharide and IFN-γ. Moreover, exosomal miR-363 released from M1 macrophages significantly suppressed the proliferation and survival and induced inflammatory gene expression in chondrocytes. G3BP2 was identified as a target gene for miR-363 and could be negatively regulated by miR-363. Knockdown of G3BP2 recapitulated the effect of miR-363 overexpression on chondrocytes. Most importantly, enforced expression of G3BP2 attenuated miR-363-induced apoptosis and inflammatory response in chondrocytes. In conclusion, miR-363 plays an indispensable role in M1 macrophage polarization and can be released from M1 macrophages via exosomes to cause chondrocyte injury and inflammation. The miR-363/G3BP2 axis may represent a promising target for the prevention of OA development.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"442 2\",\"pages\":\"Article 114276\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482724003677\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003677","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exosomal microRNA-363 mediates the destructive effect of M1 macrophages on chondrocytes by repressing G3BP2
M1 polarization of synovial macrophages contributes to cartilage degeneration and osteoarthritis (OA) development. However, limited knowledge is available about how M1 macrophages affect the biological properties of chondrocytes. This study aimed to explore the role of exosomal microRNAs (miRs) released from M1 macrophages in modulating the proliferation and survival of chondrocytes. Through bioinformatic analysis and experimental validation, we indicated that miR-363 was selectively induced in M1 macrophages (CD68+CD80+) but not M2 macrophages (CD68+CD206+). The upregulation of miR-363 in M1 macrophages depended on the activation of STAT1 signaling. Clinically, OA patients had a significantly higher miR-363 level in synovial fluid than control individuals without OA. Functional studies revealed that inhibition of miR-363 blocked the M1 macrophage polarization induced by lipopolysaccharide and IFN-γ. Moreover, exosomal miR-363 released from M1 macrophages significantly suppressed the proliferation and survival and induced inflammatory gene expression in chondrocytes. G3BP2 was identified as a target gene for miR-363 and could be negatively regulated by miR-363. Knockdown of G3BP2 recapitulated the effect of miR-363 overexpression on chondrocytes. Most importantly, enforced expression of G3BP2 attenuated miR-363-induced apoptosis and inflammatory response in chondrocytes. In conclusion, miR-363 plays an indispensable role in M1 macrophage polarization and can be released from M1 macrophages via exosomes to cause chondrocyte injury and inflammation. The miR-363/G3BP2 axis may represent a promising target for the prevention of OA development.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.