Claudia Torero Gutierrez, Niels Hadrup, Charis Loizides, Iosif Hafez, George Biskos, Martin Roursgaard, Anne Thoustrup Saber, Peter Møller, Ulla Vogel
{"title":"小鼠肺部接触铜、锡、铝、锌和钛金属氧化物后无遗传毒性。","authors":"Claudia Torero Gutierrez, Niels Hadrup, Charis Loizides, Iosif Hafez, George Biskos, Martin Roursgaard, Anne Thoustrup Saber, Peter Møller, Ulla Vogel","doi":"10.1002/em.22634","DOIUrl":null,"url":null,"abstract":"<p>Inhalation of nanosized metal oxides may occur at the workplace. Thus, information on potential hazardous effects is needed for risk assessment. We report an investigation of the genotoxic potential of different metal oxide nanomaterials. Acellular and intracellular reactive oxygen species (ROS) production were determined for all the studied nanomaterials. Moreover, mice were exposed by intratracheal instillation to copper oxide (CuO) at 2, 6, and 12 μg/mouse, tin oxide (SnO<sub>2</sub>) at 54 and 162 μg/mouse, aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) at 18 and 54 μg/mouse, zinc oxide (ZnO) at 0.7 and 2 μg/mouse, titanium dioxide (TiO<sub>2</sub>) and the benchmark carbon black at 162 μg/mouse. The doses were selected based on pilot studies. Post-exposure time points were 1 or 28 days. Genotoxicity, assessed as DNA strand breaks by the comet assay, was measured in lung and liver tissue. The acellular and intracellular ROS measurements were fairly consistent. The CuO and the carbon black bench mark particle were potent ROS generators in both assays, followed by TiO<sub>2</sub>. Al<sub>2</sub>O<sub>3</sub>, ZnO, and SnO<sub>2</sub> generated low levels of ROS. We detected no increased genotoxicity in this study using occupationally relevant dose levels of metal oxide nanomaterials after pulmonary exposure in mice, except for a slight increase in DNA damage in liver tissue at the highest dose of CuO. The present data add to the body of evidence for risk assessment of these metal oxides.</p>","PeriodicalId":11791,"journal":{"name":"Environmental and Molecular Mutagenesis","volume":"65 8","pages":"251-260"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/em.22634","citationCount":"0","resultStr":"{\"title\":\"Absence of genotoxicity following pulmonary exposure to metal oxides of copper, tin, aluminum, zinc, and titanium in mice\",\"authors\":\"Claudia Torero Gutierrez, Niels Hadrup, Charis Loizides, Iosif Hafez, George Biskos, Martin Roursgaard, Anne Thoustrup Saber, Peter Møller, Ulla Vogel\",\"doi\":\"10.1002/em.22634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inhalation of nanosized metal oxides may occur at the workplace. Thus, information on potential hazardous effects is needed for risk assessment. We report an investigation of the genotoxic potential of different metal oxide nanomaterials. Acellular and intracellular reactive oxygen species (ROS) production were determined for all the studied nanomaterials. Moreover, mice were exposed by intratracheal instillation to copper oxide (CuO) at 2, 6, and 12 μg/mouse, tin oxide (SnO<sub>2</sub>) at 54 and 162 μg/mouse, aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) at 18 and 54 μg/mouse, zinc oxide (ZnO) at 0.7 and 2 μg/mouse, titanium dioxide (TiO<sub>2</sub>) and the benchmark carbon black at 162 μg/mouse. The doses were selected based on pilot studies. Post-exposure time points were 1 or 28 days. Genotoxicity, assessed as DNA strand breaks by the comet assay, was measured in lung and liver tissue. The acellular and intracellular ROS measurements were fairly consistent. The CuO and the carbon black bench mark particle were potent ROS generators in both assays, followed by TiO<sub>2</sub>. Al<sub>2</sub>O<sub>3</sub>, ZnO, and SnO<sub>2</sub> generated low levels of ROS. We detected no increased genotoxicity in this study using occupationally relevant dose levels of metal oxide nanomaterials after pulmonary exposure in mice, except for a slight increase in DNA damage in liver tissue at the highest dose of CuO. The present data add to the body of evidence for risk assessment of these metal oxides.</p>\",\"PeriodicalId\":11791,\"journal\":{\"name\":\"Environmental and Molecular Mutagenesis\",\"volume\":\"65 8\",\"pages\":\"251-260\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/em.22634\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Molecular Mutagenesis\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/em.22634\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Molecular Mutagenesis","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/em.22634","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Absence of genotoxicity following pulmonary exposure to metal oxides of copper, tin, aluminum, zinc, and titanium in mice
Inhalation of nanosized metal oxides may occur at the workplace. Thus, information on potential hazardous effects is needed for risk assessment. We report an investigation of the genotoxic potential of different metal oxide nanomaterials. Acellular and intracellular reactive oxygen species (ROS) production were determined for all the studied nanomaterials. Moreover, mice were exposed by intratracheal instillation to copper oxide (CuO) at 2, 6, and 12 μg/mouse, tin oxide (SnO2) at 54 and 162 μg/mouse, aluminum oxide (Al2O3) at 18 and 54 μg/mouse, zinc oxide (ZnO) at 0.7 and 2 μg/mouse, titanium dioxide (TiO2) and the benchmark carbon black at 162 μg/mouse. The doses were selected based on pilot studies. Post-exposure time points were 1 or 28 days. Genotoxicity, assessed as DNA strand breaks by the comet assay, was measured in lung and liver tissue. The acellular and intracellular ROS measurements were fairly consistent. The CuO and the carbon black bench mark particle were potent ROS generators in both assays, followed by TiO2. Al2O3, ZnO, and SnO2 generated low levels of ROS. We detected no increased genotoxicity in this study using occupationally relevant dose levels of metal oxide nanomaterials after pulmonary exposure in mice, except for a slight increase in DNA damage in liver tissue at the highest dose of CuO. The present data add to the body of evidence for risk assessment of these metal oxides.
期刊介绍:
Environmental and Molecular Mutagenesis publishes original research manuscripts, reviews and commentaries on topics related to six general areas, with an emphasis on subject matter most suited for the readership of EMM as outlined below. The journal is intended for investigators in fields such as molecular biology, biochemistry, microbiology, genetics and epigenetics, genomics and epigenomics, cancer research, neurobiology, heritable mutation, radiation biology, toxicology, and molecular & environmental epidemiology.