Alejandra Quiñones, Leonardo W Lima, Katherine M Murphy, Anna L Casto, Malia A Gehan, Cory D Hirsch
{"title":"在受控环境实验中应用和评估玉米幼苗热、旱和养分胁迫的优化方法。","authors":"Alejandra Quiñones, Leonardo W Lima, Katherine M Murphy, Anna L Casto, Malia A Gehan, Cory D Hirsch","doi":"10.1101/pdb.top108467","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (<i>Zea mays</i>), also known as corn, is an important crop that plays a crucial role in global agriculture. The economic uses of maize are numerous, including for food, feed, fiber, and fuel. It has had a significant historical importance in research as well, with important discoveries made in maize regarding plant domestication, transposons, heterosis, genomics, and epigenetics. Unfortunately, environmental stresses cause substantial yield loss to maize crops each year. Yield losses are predicted to increase in future climate scenarios, posing a threat to food security and other sectors of the global economy. Developing efficient methods to study maize abiotic stress responses is a crucial step toward a more resilient and productive agricultural system. This review describes the importance of and methods for studying the effects of heat, drought, and nutrient deficiency on early developmental stages of maize grown in controlled environments. Studying the early effects of environmental stressors in controlled environments allows researchers to work with a variety of environmental conditions with low environmental variance, which can inform future field-based research. We highlight the current knowledge of physiological responses of maize to heat, drought, and nutrient stress; remaining knowledge gaps and challenges; and information on how standardized protocols can address these issues.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Methods for Applying and Assessing Heat, Drought, and Nutrient Stress of Maize Seedlings in Controlled Environment Experiments.\",\"authors\":\"Alejandra Quiñones, Leonardo W Lima, Katherine M Murphy, Anna L Casto, Malia A Gehan, Cory D Hirsch\",\"doi\":\"10.1101/pdb.top108467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maize (<i>Zea mays</i>), also known as corn, is an important crop that plays a crucial role in global agriculture. The economic uses of maize are numerous, including for food, feed, fiber, and fuel. It has had a significant historical importance in research as well, with important discoveries made in maize regarding plant domestication, transposons, heterosis, genomics, and epigenetics. Unfortunately, environmental stresses cause substantial yield loss to maize crops each year. Yield losses are predicted to increase in future climate scenarios, posing a threat to food security and other sectors of the global economy. Developing efficient methods to study maize abiotic stress responses is a crucial step toward a more resilient and productive agricultural system. This review describes the importance of and methods for studying the effects of heat, drought, and nutrient deficiency on early developmental stages of maize grown in controlled environments. Studying the early effects of environmental stressors in controlled environments allows researchers to work with a variety of environmental conditions with low environmental variance, which can inform future field-based research. We highlight the current knowledge of physiological responses of maize to heat, drought, and nutrient stress; remaining knowledge gaps and challenges; and information on how standardized protocols can address these issues.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.top108467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top108467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimized Methods for Applying and Assessing Heat, Drought, and Nutrient Stress of Maize Seedlings in Controlled Environment Experiments.
Maize (Zea mays), also known as corn, is an important crop that plays a crucial role in global agriculture. The economic uses of maize are numerous, including for food, feed, fiber, and fuel. It has had a significant historical importance in research as well, with important discoveries made in maize regarding plant domestication, transposons, heterosis, genomics, and epigenetics. Unfortunately, environmental stresses cause substantial yield loss to maize crops each year. Yield losses are predicted to increase in future climate scenarios, posing a threat to food security and other sectors of the global economy. Developing efficient methods to study maize abiotic stress responses is a crucial step toward a more resilient and productive agricultural system. This review describes the importance of and methods for studying the effects of heat, drought, and nutrient deficiency on early developmental stages of maize grown in controlled environments. Studying the early effects of environmental stressors in controlled environments allows researchers to work with a variety of environmental conditions with low environmental variance, which can inform future field-based research. We highlight the current knowledge of physiological responses of maize to heat, drought, and nutrient stress; remaining knowledge gaps and challenges; and information on how standardized protocols can address these issues.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.