{"title":"全 CircRNome 特征研究揭示了 circAATF 在胆囊癌抗 PD-L1 免疫疗法中的促进作用。","authors":"Yueqi Wang, Shengli Li, Xiaobo Bo, Yuan Li, Changcheng Wang, Lingxi Nan, Dexiang Zhang, Houbao Liu, Jiwei Zhang","doi":"10.1002/ctm2.70060","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Circular RNAs (circRNAs) have been shown to play important roles in tumour development and tumour immunology. However, genome-wide characterisation of circRNAs and their roles in the immunology and immunotherapy of gallbladder carcinoma (GBC) has been lacking. We present a comprehensive characterisation of the circRNA landscape in GBC, revealing GBC-specific circRNAs. Our analysis found that circRNAs are significantly enriched in cell proliferation and are involved in cancer-related hallmarks. In particular, circAATF was upregulated in GBC, which was positively correlated with AATF mRNA expression, and promoted GBC cell growth. Through integrating computational and experimental approaches, we revealed that circAATF is positively associated with the CD4<sup>+</sup> T cell abundance and PD-L1 level, and enhances the clinical benefits of anti-PD-L1 immunotherapy for GBC. We further demonstrate that circAATF elevates the PD-L1 level by activating phosphorylated AKT and acting as a sponge for miR-142-5p. CircAATF is positively associated with CD4<sup>+</sup> T cells and PD-L1 levels and shows potential to aid anti-PD-L1 immunotherapy for GBC. Our study provides insights into roles of circAATF in the tumour development and immunology of GBC and accelerates the development of therapeutic strategies for GBC immunotherapy.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>\n <p>We present a comprehensive characterisation of circRNA landscape in gallbladder carcinoma (GBC).</p>\n </li>\n \n <li>\n <p>CircAATF is positively associated with CD4<sup>+</sup> T cell abundance and PD-L1 expression and is shown to promote PD-L1 treatment in mouse model.</p>\n </li>\n \n <li>\n <p>CircAATF can elevate PD-L1 level through phosphorylated AKT and linear AATF, which upregulates PD-L1 by acting as a sponge of miR-142-5p.</p>\n </li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491271/pdf/","citationCount":"0","resultStr":"{\"title\":\"CircRNome-wide characterisation reveals the promoting role of circAATF in anti-PD-L1 immunotherapy of gallbladder carcinoma\",\"authors\":\"Yueqi Wang, Shengli Li, Xiaobo Bo, Yuan Li, Changcheng Wang, Lingxi Nan, Dexiang Zhang, Houbao Liu, Jiwei Zhang\",\"doi\":\"10.1002/ctm2.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>Circular RNAs (circRNAs) have been shown to play important roles in tumour development and tumour immunology. However, genome-wide characterisation of circRNAs and their roles in the immunology and immunotherapy of gallbladder carcinoma (GBC) has been lacking. We present a comprehensive characterisation of the circRNA landscape in GBC, revealing GBC-specific circRNAs. Our analysis found that circRNAs are significantly enriched in cell proliferation and are involved in cancer-related hallmarks. In particular, circAATF was upregulated in GBC, which was positively correlated with AATF mRNA expression, and promoted GBC cell growth. Through integrating computational and experimental approaches, we revealed that circAATF is positively associated with the CD4<sup>+</sup> T cell abundance and PD-L1 level, and enhances the clinical benefits of anti-PD-L1 immunotherapy for GBC. We further demonstrate that circAATF elevates the PD-L1 level by activating phosphorylated AKT and acting as a sponge for miR-142-5p. CircAATF is positively associated with CD4<sup>+</sup> T cells and PD-L1 levels and shows potential to aid anti-PD-L1 immunotherapy for GBC. Our study provides insights into roles of circAATF in the tumour development and immunology of GBC and accelerates the development of therapeutic strategies for GBC immunotherapy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Highlights</h3>\\n \\n <div>\\n <ul>\\n \\n <li>\\n <p>We present a comprehensive characterisation of circRNA landscape in gallbladder carcinoma (GBC).</p>\\n </li>\\n \\n <li>\\n <p>CircAATF is positively associated with CD4<sup>+</sup> T cell abundance and PD-L1 expression and is shown to promote PD-L1 treatment in mouse model.</p>\\n </li>\\n \\n <li>\\n <p>CircAATF can elevate PD-L1 level through phosphorylated AKT and linear AATF, which upregulates PD-L1 by acting as a sponge of miR-142-5p.</p>\\n </li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":10189,\"journal\":{\"name\":\"Clinical and Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491271/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70060\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70060","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
CircRNome-wide characterisation reveals the promoting role of circAATF in anti-PD-L1 immunotherapy of gallbladder carcinoma
Circular RNAs (circRNAs) have been shown to play important roles in tumour development and tumour immunology. However, genome-wide characterisation of circRNAs and their roles in the immunology and immunotherapy of gallbladder carcinoma (GBC) has been lacking. We present a comprehensive characterisation of the circRNA landscape in GBC, revealing GBC-specific circRNAs. Our analysis found that circRNAs are significantly enriched in cell proliferation and are involved in cancer-related hallmarks. In particular, circAATF was upregulated in GBC, which was positively correlated with AATF mRNA expression, and promoted GBC cell growth. Through integrating computational and experimental approaches, we revealed that circAATF is positively associated with the CD4+ T cell abundance and PD-L1 level, and enhances the clinical benefits of anti-PD-L1 immunotherapy for GBC. We further demonstrate that circAATF elevates the PD-L1 level by activating phosphorylated AKT and acting as a sponge for miR-142-5p. CircAATF is positively associated with CD4+ T cells and PD-L1 levels and shows potential to aid anti-PD-L1 immunotherapy for GBC. Our study provides insights into roles of circAATF in the tumour development and immunology of GBC and accelerates the development of therapeutic strategies for GBC immunotherapy.
Highlights
We present a comprehensive characterisation of circRNA landscape in gallbladder carcinoma (GBC).
CircAATF is positively associated with CD4+ T cell abundance and PD-L1 expression and is shown to promote PD-L1 treatment in mouse model.
CircAATF can elevate PD-L1 level through phosphorylated AKT and linear AATF, which upregulates PD-L1 by acting as a sponge of miR-142-5p.
期刊介绍:
Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.