揭示木兰醇对人降钙素(hCT)聚集的抑制作用:一项综合体内研究

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Chemphyschem Pub Date : 2025-01-02 Epub Date: 2024-11-20 DOI:10.1002/cphc.202400679
Mira Jhawar, Sandip Paul
{"title":"揭示木兰醇对人降钙素(hCT)聚集的抑制作用:一项综合体内研究","authors":"Mira Jhawar, Sandip Paul","doi":"10.1002/cphc.202400679","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid fibril formation by some peptides leads to several neurogenetic disorders. This limits their biological activity and increases cytotoxicity. Human calcitonin (hCT), 32 residue containing peptide, known for regulating calcium and phosphate concentration in the blood tends to form amyloids in aqueous medium. Polyphenols are very effective in inhibiting fibril formation. As part of our research, we have taken Magnolol (Mag), which is extracted from the Chinese herb Magnolia officinalis. To evaluate its effectiveness as an inhibitor in preventing hCT aggregation, we conducted an all-atom classical molecular dynamics simulation with varying concentrations of Mag. In presence of Mag, hCT maintains its helical conformation in higher order. Magnolol primarily interacts with hCT via van der Waals interaction. Asp15 residue of hCT, resides in the amyloid region (D<sub>15</sub>FNKF<sub>19</sub>) forms strong hydrogen bonding interaction with Mag. Moreover, aromatic residues of hCT interact with Mag through π-π stacking interactions. Our work gives insights into the molecular mechanism of Magnolol in the inhibition of hCT fibril formation to use it as a potential candidate for medicinal purpose.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400679"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Inhibitory Effect of Magnolol in the Aggregation of Human Calcitonin (hCT): A Comprehensive In-Silico Study.\",\"authors\":\"Mira Jhawar, Sandip Paul\",\"doi\":\"10.1002/cphc.202400679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyloid fibril formation by some peptides leads to several neurogenetic disorders. This limits their biological activity and increases cytotoxicity. Human calcitonin (hCT), 32 residue containing peptide, known for regulating calcium and phosphate concentration in the blood tends to form amyloids in aqueous medium. Polyphenols are very effective in inhibiting fibril formation. As part of our research, we have taken Magnolol (Mag), which is extracted from the Chinese herb Magnolia officinalis. To evaluate its effectiveness as an inhibitor in preventing hCT aggregation, we conducted an all-atom classical molecular dynamics simulation with varying concentrations of Mag. In presence of Mag, hCT maintains its helical conformation in higher order. Magnolol primarily interacts with hCT via van der Waals interaction. Asp15 residue of hCT, resides in the amyloid region (D<sub>15</sub>FNKF<sub>19</sub>) forms strong hydrogen bonding interaction with Mag. Moreover, aromatic residues of hCT interact with Mag through π-π stacking interactions. Our work gives insights into the molecular mechanism of Magnolol in the inhibition of hCT fibril formation to use it as a potential candidate for medicinal purpose.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400679\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400679\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400679","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

一些多肽形成的淀粉样纤维会导致多种神经遗传疾病。这限制了它们的生物活性并增加了细胞毒性。人降钙素(hCT)是一种含有 32 个残基的多肽,具有调节血液中钙和磷酸盐浓度的作用,在水介质中容易形成淀粉样蛋白。多酚在抑制纤维形成方面非常有效。作为研究的一部分,我们服用了从中草药厚朴中提取的 Magnolol(Mag)。为了评估 Magnolol 作为一种抑制剂在防止 hCT 聚集方面的有效性,我们对不同浓度的 Mag 进行了全原子经典分子动力学模拟。在 Mag 的存在下,hCT 保持高阶螺旋构象。Magnolol 主要通过范德华相互作用与 hCT 发生作用。hCT 的 Asp15 残基位于淀粉样区域(D15FNKF19),与 Mag 形成强烈的氢键相互作用。此外,hCT 的芳香残基通过 π-π 堆积相互作用与 Mag 相互作用。我们的研究揭示了木兰醇抑制 hCT 纤维形成的分子机制,从而将其作为一种潜在的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling the Inhibitory Effect of Magnolol in the Aggregation of Human Calcitonin (hCT): A Comprehensive In-Silico Study.

Amyloid fibril formation by some peptides leads to several neurogenetic disorders. This limits their biological activity and increases cytotoxicity. Human calcitonin (hCT), 32 residue containing peptide, known for regulating calcium and phosphate concentration in the blood tends to form amyloids in aqueous medium. Polyphenols are very effective in inhibiting fibril formation. As part of our research, we have taken Magnolol (Mag), which is extracted from the Chinese herb Magnolia officinalis. To evaluate its effectiveness as an inhibitor in preventing hCT aggregation, we conducted an all-atom classical molecular dynamics simulation with varying concentrations of Mag. In presence of Mag, hCT maintains its helical conformation in higher order. Magnolol primarily interacts with hCT via van der Waals interaction. Asp15 residue of hCT, resides in the amyloid region (D15FNKF19) forms strong hydrogen bonding interaction with Mag. Moreover, aromatic residues of hCT interact with Mag through π-π stacking interactions. Our work gives insights into the molecular mechanism of Magnolol in the inhibition of hCT fibril formation to use it as a potential candidate for medicinal purpose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信