Xingguang Chen, Haojie Xu, Wenjing Li, Junhua Luo, Zhihua Sun
{"title":"开发高性能分子铁电的卤素置换策略。","authors":"Xingguang Chen, Haojie Xu, Wenjing Li, Junhua Luo, Zhihua Sun","doi":"10.1002/cphc.202400801","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular ferroelectrics are emerging as a robust family of electric-ordered materials due to their distinct structural flexibility, molecular tunability, and versatility. In recent years, diverse chemical design approaches have significantly contributed to discovering and optimizing ferroelectric performances of molecule-based ferroelectric systems. Notably, halogen substitution is one of the most effective strategies for inducing symmetry breaking and optimizing the dipole moments and potential energy barriers. In this minireview, we have summarized recent significant advances of halogen substitution strategy in molecule-based ferroelectrics, including organic-inorganic hybrids and metal-free molecular systems. Subsequently, we discuss the underlying mechanism of halogen substitution to improve ferroelectric performances, including the generation of spontaneous polarization, enhancement of Curie temperature, and bandgap engineering. Finally, the future directions in designing and modulating molecular ferroelectrics by halogen substitution strategy are also highlighted.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400801"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Halogen Substitution Strategy for Exploiting High-Performance Molecular Ferroelectrics.\",\"authors\":\"Xingguang Chen, Haojie Xu, Wenjing Li, Junhua Luo, Zhihua Sun\",\"doi\":\"10.1002/cphc.202400801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular ferroelectrics are emerging as a robust family of electric-ordered materials due to their distinct structural flexibility, molecular tunability, and versatility. In recent years, diverse chemical design approaches have significantly contributed to discovering and optimizing ferroelectric performances of molecule-based ferroelectric systems. Notably, halogen substitution is one of the most effective strategies for inducing symmetry breaking and optimizing the dipole moments and potential energy barriers. In this minireview, we have summarized recent significant advances of halogen substitution strategy in molecule-based ferroelectrics, including organic-inorganic hybrids and metal-free molecular systems. Subsequently, we discuss the underlying mechanism of halogen substitution to improve ferroelectric performances, including the generation of spontaneous polarization, enhancement of Curie temperature, and bandgap engineering. Finally, the future directions in designing and modulating molecular ferroelectrics by halogen substitution strategy are also highlighted.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400801\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400801\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400801","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Halogen Substitution Strategy for Exploiting High-Performance Molecular Ferroelectrics.
Molecular ferroelectrics are emerging as a robust family of electric-ordered materials due to their distinct structural flexibility, molecular tunability, and versatility. In recent years, diverse chemical design approaches have significantly contributed to discovering and optimizing ferroelectric performances of molecule-based ferroelectric systems. Notably, halogen substitution is one of the most effective strategies for inducing symmetry breaking and optimizing the dipole moments and potential energy barriers. In this minireview, we have summarized recent significant advances of halogen substitution strategy in molecule-based ferroelectrics, including organic-inorganic hybrids and metal-free molecular systems. Subsequently, we discuss the underlying mechanism of halogen substitution to improve ferroelectric performances, including the generation of spontaneous polarization, enhancement of Curie temperature, and bandgap engineering. Finally, the future directions in designing and modulating molecular ferroelectrics by halogen substitution strategy are also highlighted.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.