MetaDegron:用于预测 E3 连接酶靶向脱胶子的多模态特征整合蛋白质语言模型。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Mengqiu Zheng, Shaofeng Lin, Kunqi Chen, Ruifeng Hu, Liming Wang, Zhongming Zhao, Haodong Xu
{"title":"MetaDegron:用于预测 E3 连接酶靶向脱胶子的多模态特征整合蛋白质语言模型。","authors":"Mengqiu Zheng, Shaofeng Lin, Kunqi Chen, Ruifeng Hu, Liming Wang, Zhongming Zhao, Haodong Xu","doi":"10.1093/bib/bbae519","DOIUrl":null,"url":null,"abstract":"<p><p>Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the ubiquitin-mediated proteolysis, and their interactions determine the degradation specificity and maintain cellular homeostasis. To date, only a limited number of targeted degron instances have been identified, and their properties are not yet fully characterized. To tackle on this challenge, here we develop a novel deep-learning framework, namely MetaDegron, for predicting E3 ligase targeted degron by integrating the protein language model and comprehensive featurization strategies. Through extensive evaluations using benchmark datasets and comparison with existing method, such as Degpred, we demonstrate the superior performance of MetaDegron. Among functional features, MetaDegron allows batch prediction of targeted degrons of 21 E3 ligases, and provides functional annotations and visualization of multiple degron-related structural and physicochemical features. MetaDegron is freely available at http://modinfor.com/MetaDegron/. We anticipate that MetaDegron will serve as a useful tool for the clinical and translational community to elucidate the mechanisms of regulation of protein homeostasis, cancer research, and drug development.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491831/pdf/","citationCount":"0","resultStr":"{\"title\":\"MetaDegron: multimodal feature-integrated protein language model for predicting E3 ligase targeted degrons.\",\"authors\":\"Mengqiu Zheng, Shaofeng Lin, Kunqi Chen, Ruifeng Hu, Liming Wang, Zhongming Zhao, Haodong Xu\",\"doi\":\"10.1093/bib/bbae519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the ubiquitin-mediated proteolysis, and their interactions determine the degradation specificity and maintain cellular homeostasis. To date, only a limited number of targeted degron instances have been identified, and their properties are not yet fully characterized. To tackle on this challenge, here we develop a novel deep-learning framework, namely MetaDegron, for predicting E3 ligase targeted degron by integrating the protein language model and comprehensive featurization strategies. Through extensive evaluations using benchmark datasets and comparison with existing method, such as Degpred, we demonstrate the superior performance of MetaDegron. Among functional features, MetaDegron allows batch prediction of targeted degrons of 21 E3 ligases, and provides functional annotations and visualization of multiple degron-related structural and physicochemical features. MetaDegron is freely available at http://modinfor.com/MetaDegron/. We anticipate that MetaDegron will serve as a useful tool for the clinical and translational community to elucidate the mechanisms of regulation of protein homeostasis, cancer research, and drug development.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491831/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae519\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae519","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

通过泛素蛋白酶体系统的时空调控进行蛋白质降解对许多细胞过程都至关重要。E3 连接酶和降解信号(degrons),即它们在靶蛋白中识别的序列,是泛素介导的蛋白水解的关键部分,它们之间的相互作用决定了降解的特异性并维持着细胞的平衡。迄今为止,只发现了数量有限的靶向降解子实例,它们的特性也尚未完全确定。为了应对这一挑战,我们开发了一种新型深度学习框架,即 MetaDegron,通过整合蛋白质语言模型和综合特征化策略来预测 E3 连接酶靶向降解子。通过使用基准数据集进行广泛评估,并与 Degpred 等现有方法进行比较,我们证明了 MetaDegron 的卓越性能。在功能特征方面,MetaDegron 可以批量预测 21 种 E3 连接酶的目标去胶子,并提供多种去胶子相关结构和理化特征的功能注释和可视化。MetaDegron 可在 http://modinfor.com/MetaDegron/ 免费获取。我们预计,MetaDegron 将成为临床和转化医学界阐明蛋白质稳态调节机制、癌症研究和药物开发的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MetaDegron: multimodal feature-integrated protein language model for predicting E3 ligase targeted degrons.

Protein degradation through the ubiquitin proteasome system at the spatial and temporal regulation is essential for many cellular processes. E3 ligases and degradation signals (degrons), the sequences they recognize in the target proteins, are key parts of the ubiquitin-mediated proteolysis, and their interactions determine the degradation specificity and maintain cellular homeostasis. To date, only a limited number of targeted degron instances have been identified, and their properties are not yet fully characterized. To tackle on this challenge, here we develop a novel deep-learning framework, namely MetaDegron, for predicting E3 ligase targeted degron by integrating the protein language model and comprehensive featurization strategies. Through extensive evaluations using benchmark datasets and comparison with existing method, such as Degpred, we demonstrate the superior performance of MetaDegron. Among functional features, MetaDegron allows batch prediction of targeted degrons of 21 E3 ligases, and provides functional annotations and visualization of multiple degron-related structural and physicochemical features. MetaDegron is freely available at http://modinfor.com/MetaDegron/. We anticipate that MetaDegron will serve as a useful tool for the clinical and translational community to elucidate the mechanisms of regulation of protein homeostasis, cancer research, and drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信