发现相分离蛋白质及其作用机制的双任务预测器

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yetong Zhou, Shengming Zhou, Yue Bi, Quan Zou, Cangzhi Jia
{"title":"发现相分离蛋白质及其作用机制的双任务预测器","authors":"Yetong Zhou, Shengming Zhou, Yue Bi, Quan Zou, Cangzhi Jia","doi":"10.1093/bib/bbae528","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid-liquid phase separation (LLPS) is one of the mechanisms mediating the compartmentalization of macromolecules (proteins and nucleic acids) in cells, forming biomolecular condensates or membraneless organelles. Consequently, the systematic identification of potential LLPS proteins is crucial for understanding the phase separation process and its biological mechanisms. A two-task predictor, Opt_PredLLPS, was developed to discover potential phase separation proteins and further evaluate their mechanism. The first task model of Opt_PredLLPS combines a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) through a fully connected layer, where the CNN utilizes evolutionary information features as input, and BiLSTM utilizes multimodal features as input. If a protein is predicted to be an LLPS protein, it is input into the second task model to predict whether this protein needs to interact with its partners to undergo LLPS. The second task model employs the XGBoost classification algorithm and 37 physicochemical properties following a three-step feature selection. The effectiveness of the model was validated on multiple benchmark datasets, and in silico saturation mutagenesis was used to identify regions that play a key role in phase separation. These findings may assist future research on the LLPS mechanism and the discovery of potential phase separation proteins.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492799/pdf/","citationCount":"0","resultStr":"{\"title\":\"A two-task predictor for discovering phase separation proteins and their undergoing mechanism.\",\"authors\":\"Yetong Zhou, Shengming Zhou, Yue Bi, Quan Zou, Cangzhi Jia\",\"doi\":\"10.1093/bib/bbae528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid-liquid phase separation (LLPS) is one of the mechanisms mediating the compartmentalization of macromolecules (proteins and nucleic acids) in cells, forming biomolecular condensates or membraneless organelles. Consequently, the systematic identification of potential LLPS proteins is crucial for understanding the phase separation process and its biological mechanisms. A two-task predictor, Opt_PredLLPS, was developed to discover potential phase separation proteins and further evaluate their mechanism. The first task model of Opt_PredLLPS combines a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) through a fully connected layer, where the CNN utilizes evolutionary information features as input, and BiLSTM utilizes multimodal features as input. If a protein is predicted to be an LLPS protein, it is input into the second task model to predict whether this protein needs to interact with its partners to undergo LLPS. The second task model employs the XGBoost classification algorithm and 37 physicochemical properties following a three-step feature selection. The effectiveness of the model was validated on multiple benchmark datasets, and in silico saturation mutagenesis was used to identify regions that play a key role in phase separation. These findings may assist future research on the LLPS mechanism and the discovery of potential phase separation proteins.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492799/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae528\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae528","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

液-液相分离(LLPS)是介导细胞内大分子(蛋白质和核酸)分隔、形成生物分子凝聚体或无膜细胞器的机制之一。因此,系统识别潜在的 LLPS 蛋白对于了解相分离过程及其生物机制至关重要。为了发现潜在的相分离蛋白并进一步评估其机制,我们开发了一个双任务预测器 Opt_PredLLPS。Opt_PredLLPS 的第一个任务模型通过一个全连接层将卷积神经网络(CNN)和双向长短期记忆(BiLSTM)结合在一起,其中 CNN 利用进化信息特征作为输入,BiLSTM 利用多模态特征作为输入。如果一个蛋白质被预测为 LLPS 蛋白质,它就会被输入第二个任务模型,以预测该蛋白质是否需要与其伙伴相互作用才能发生 LLPS。第二个任务模型采用了 XGBoost 分类算法和 37 种物理化学特性,并经过三步特征选择。该模型的有效性在多个基准数据集上得到了验证,并利用硅饱和诱变技术确定了在相分离中起关键作用的区域。这些发现可能有助于未来对 LLPS 机制的研究和潜在相分离蛋白的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-task predictor for discovering phase separation proteins and their undergoing mechanism.

Liquid-liquid phase separation (LLPS) is one of the mechanisms mediating the compartmentalization of macromolecules (proteins and nucleic acids) in cells, forming biomolecular condensates or membraneless organelles. Consequently, the systematic identification of potential LLPS proteins is crucial for understanding the phase separation process and its biological mechanisms. A two-task predictor, Opt_PredLLPS, was developed to discover potential phase separation proteins and further evaluate their mechanism. The first task model of Opt_PredLLPS combines a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) through a fully connected layer, where the CNN utilizes evolutionary information features as input, and BiLSTM utilizes multimodal features as input. If a protein is predicted to be an LLPS protein, it is input into the second task model to predict whether this protein needs to interact with its partners to undergo LLPS. The second task model employs the XGBoost classification algorithm and 37 physicochemical properties following a three-step feature selection. The effectiveness of the model was validated on multiple benchmark datasets, and in silico saturation mutagenesis was used to identify regions that play a key role in phase separation. These findings may assist future research on the LLPS mechanism and the discovery of potential phase separation proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信