Maryam Noroozi, Farrokh Ghahremaninejad, Mehrshid Riahi, James I Cohen
{"title":"石蒜科(紫草科)的系统发生组学和质体进化。","authors":"Maryam Noroozi, Farrokh Ghahremaninejad, Mehrshid Riahi, James I Cohen","doi":"10.1186/s12870-024-05665-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lithospermeae is the largest tribe within Boraginaceae. The tribe has been the focus of multiple phylogenetic studies over the last 15 years, with most focused on one genus or a few genera. In the present study, we newly sequenced 69 species of Lithospermeae and relatives to analyze the phylogenomic relationships among its members as well as the evolution of the plastid genome.</p><p><strong>Results: </strong>The phylogeny of Lithospermeae resolved from the plastid genome and nrDNA cistron is generally congruent with prior studies, but is better resolved and supported. Increasing character sampling across the plastid genome results in gradually more similar trees to that from the entire plastid genome. Overall, plastid genome structure was quite consistent across Lithospermeae. Codon Usage Bias (CUB) analyses demonstrate that across Lithospermeae plastid genomes were rich in AT and poor in GC. Mutation may play a greater role than selection across the plastid genome of Lithospermeae. The present study is the first to highlight the CUB characteristics of Lithospermeae species, which can help elucidate the mechanisms underlying patterns of molecular evolution and improve the expression levels of exogenous genes by codon optimization.</p><p><strong>Conclusions: </strong>This study provides a comprehensive phylogenomic analysis of Lithospermeae, significantly enhancing our understanding of the phylogenetic relationships and plastid genome evolution within this largest tribe of Boraginaceae. By utilizing an expanded genomic sampling approach, we have achieved increased resolution and support among the evolutionary relationships of the tribe, in line with but improving upon previous studies. The analyses of plastid genome structure revealed consistency across Lithospermeae, with a notable CUB. This study marks the first investigation into the CUB of Lithospermeae species and sets the stage for further research on the molecular evolution of plastid genomes across Boraginaceae.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475214/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylogenomics and plastome evolution of Lithospermeae (Boraginaceae).\",\"authors\":\"Maryam Noroozi, Farrokh Ghahremaninejad, Mehrshid Riahi, James I Cohen\",\"doi\":\"10.1186/s12870-024-05665-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Lithospermeae is the largest tribe within Boraginaceae. The tribe has been the focus of multiple phylogenetic studies over the last 15 years, with most focused on one genus or a few genera. In the present study, we newly sequenced 69 species of Lithospermeae and relatives to analyze the phylogenomic relationships among its members as well as the evolution of the plastid genome.</p><p><strong>Results: </strong>The phylogeny of Lithospermeae resolved from the plastid genome and nrDNA cistron is generally congruent with prior studies, but is better resolved and supported. Increasing character sampling across the plastid genome results in gradually more similar trees to that from the entire plastid genome. Overall, plastid genome structure was quite consistent across Lithospermeae. Codon Usage Bias (CUB) analyses demonstrate that across Lithospermeae plastid genomes were rich in AT and poor in GC. Mutation may play a greater role than selection across the plastid genome of Lithospermeae. The present study is the first to highlight the CUB characteristics of Lithospermeae species, which can help elucidate the mechanisms underlying patterns of molecular evolution and improve the expression levels of exogenous genes by codon optimization.</p><p><strong>Conclusions: </strong>This study provides a comprehensive phylogenomic analysis of Lithospermeae, significantly enhancing our understanding of the phylogenetic relationships and plastid genome evolution within this largest tribe of Boraginaceae. By utilizing an expanded genomic sampling approach, we have achieved increased resolution and support among the evolutionary relationships of the tribe, in line with but improving upon previous studies. The analyses of plastid genome structure revealed consistency across Lithospermeae, with a notable CUB. This study marks the first investigation into the CUB of Lithospermeae species and sets the stage for further research on the molecular evolution of plastid genomes across Boraginaceae.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475214/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-024-05665-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05665-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Phylogenomics and plastome evolution of Lithospermeae (Boraginaceae).
Background: Lithospermeae is the largest tribe within Boraginaceae. The tribe has been the focus of multiple phylogenetic studies over the last 15 years, with most focused on one genus or a few genera. In the present study, we newly sequenced 69 species of Lithospermeae and relatives to analyze the phylogenomic relationships among its members as well as the evolution of the plastid genome.
Results: The phylogeny of Lithospermeae resolved from the plastid genome and nrDNA cistron is generally congruent with prior studies, but is better resolved and supported. Increasing character sampling across the plastid genome results in gradually more similar trees to that from the entire plastid genome. Overall, plastid genome structure was quite consistent across Lithospermeae. Codon Usage Bias (CUB) analyses demonstrate that across Lithospermeae plastid genomes were rich in AT and poor in GC. Mutation may play a greater role than selection across the plastid genome of Lithospermeae. The present study is the first to highlight the CUB characteristics of Lithospermeae species, which can help elucidate the mechanisms underlying patterns of molecular evolution and improve the expression levels of exogenous genes by codon optimization.
Conclusions: This study provides a comprehensive phylogenomic analysis of Lithospermeae, significantly enhancing our understanding of the phylogenetic relationships and plastid genome evolution within this largest tribe of Boraginaceae. By utilizing an expanded genomic sampling approach, we have achieved increased resolution and support among the evolutionary relationships of the tribe, in line with but improving upon previous studies. The analyses of plastid genome structure revealed consistency across Lithospermeae, with a notable CUB. This study marks the first investigation into the CUB of Lithospermeae species and sets the stage for further research on the molecular evolution of plastid genomes across Boraginaceae.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.