在全基因组范围内鉴定和分析五倍子花青素合成相关的 R2R3-MYB 基因。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Liangmu Xie, Yinuo Wang, Yutian Tao, Luxi Chen, Hanyang Lin, Zhechen Qi, Junmin Li
{"title":"在全基因组范围内鉴定和分析五倍子花青素合成相关的 R2R3-MYB 基因。","authors":"Liangmu Xie, Yinuo Wang, Yutian Tao, Luxi Chen, Hanyang Lin, Zhechen Qi, Junmin Li","doi":"10.1186/s12864-024-10882-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce.</p><p><strong>Results: </strong>A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis.</p><p><strong>Conclusion: </strong>Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472487/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Fragaria pentaphylla.\",\"authors\":\"Liangmu Xie, Yinuo Wang, Yutian Tao, Luxi Chen, Hanyang Lin, Zhechen Qi, Junmin Li\",\"doi\":\"10.1186/s12864-024-10882-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce.</p><p><strong>Results: </strong>A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis.</p><p><strong>Conclusion: </strong>Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472487/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-024-10882-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10882-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:MYB 转录因子调节许多植物物种的花青素生物合成。然而,有关 R2R3-MYB 基因家族及其参与调控五色番茄红白果实花青素生物合成的全基因组综合研究仍然很少:结果:从五味子基因组中共鉴定出101个FpR2R3-MYB基因,并根据系统发育分析将其分为34个亚群。基因结构(外显子/内含子)和蛋白质基序在 FpR2R3-MYB 基因中特别保守,尤其是同一亚群中的成员。FpR2R3-MYB 基因分布在 F. pentaphylla 的 7 条染色体上。对基因复制事件的分析表明,有5对串联复制基因和16对片段复制基因,这表明片段复制是五倍子蛙FpR2R3-MYB基因家族扩展的主要模式。FpR2R3-MYB启动子的顺式调节元件涉及细胞发育、植物激素、环境胁迫和光反应。根据对 FpR2R3-MYB 基因家族和转录组测序(RNA-seq)数据的分析,发现 FpMYB9 是参与调控五倍子果实花青素合成的关键转录因子。反转录定量实时聚合酶链式反应(reverse transcription quantitative real-time PCR)证实,FpMYB9 的表达在红果成熟期显著增加。此外,亚细胞定位实验进一步证实了 FpMYB9 在核内的存在,支持其作为转录因子参与花青素生物合成的作用:我们的研究结果表明,FpR2R3-MYB 基因高度保守,在五倍子果实的花青素生物合成过程中发挥着重要作用。我们的研究结果还为进一步了解 FpMYB9 在五倍子果实花青素形成过程中的调控机制提供了令人信服的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide identification and analysis of anthocyanin synthesis-related R2R3-MYB genes in Fragaria pentaphylla.

Background: MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce.

Results: A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis.

Conclusion: Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信