Ceri Battle, Elaine Cole, Kym Carter, Edward Baker
{"title":"急诊科处理胸部钝挫伤的临床预测模型:系统综述。","authors":"Ceri Battle, Elaine Cole, Kym Carter, Edward Baker","doi":"10.1186/s12873-024-01107-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The aim of this systematic review was to investigate how clinical prediction models compare in terms of their methodological development, validation, and predictive capabilities, for patients with blunt chest trauma presenting to the Emergency Department.</p><p><strong>Methods: </strong>A systematic review was conducted across databases from 1st Jan 2000 until 1st April 2024. Studies were categorised into three types of multivariable prediction research and data extracted regarding methodological issues and the predictive capabilities of each model. Risk of bias and applicability were assessed.</p><p><strong>Results: </strong>41 studies were included that discussed 22 different models. The most commonly observed study design was a single-centre, retrospective, chart review. The most widely externally validated clinical prediction models with moderate to good discrimination were the Thoracic Trauma Severity Score and the STUMBL Score.</p><p><strong>Discussion: </strong>This review demonstrates that the predictive ability of some of the existing clinical prediction models is acceptable, but high risk of bias and lack of subsequent external validation limits the extensive application of the models. The Thoracic Trauma Severity Score and STUMBL Score demonstrate better predictive accuracy in both development and external validation studies than the other models, but require recalibration and / or update and evaluation of their clinical and cost effectiveness.</p><p><strong>Review registration: </strong>PROSPERO database ( https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=351638 ).</p>","PeriodicalId":9002,"journal":{"name":"BMC Emergency Medicine","volume":"24 1","pages":"189"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470733/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical prediction models for the management of blunt chest trauma in the emergency department: a systematic review.\",\"authors\":\"Ceri Battle, Elaine Cole, Kym Carter, Edward Baker\",\"doi\":\"10.1186/s12873-024-01107-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The aim of this systematic review was to investigate how clinical prediction models compare in terms of their methodological development, validation, and predictive capabilities, for patients with blunt chest trauma presenting to the Emergency Department.</p><p><strong>Methods: </strong>A systematic review was conducted across databases from 1st Jan 2000 until 1st April 2024. Studies were categorised into three types of multivariable prediction research and data extracted regarding methodological issues and the predictive capabilities of each model. Risk of bias and applicability were assessed.</p><p><strong>Results: </strong>41 studies were included that discussed 22 different models. The most commonly observed study design was a single-centre, retrospective, chart review. The most widely externally validated clinical prediction models with moderate to good discrimination were the Thoracic Trauma Severity Score and the STUMBL Score.</p><p><strong>Discussion: </strong>This review demonstrates that the predictive ability of some of the existing clinical prediction models is acceptable, but high risk of bias and lack of subsequent external validation limits the extensive application of the models. The Thoracic Trauma Severity Score and STUMBL Score demonstrate better predictive accuracy in both development and external validation studies than the other models, but require recalibration and / or update and evaluation of their clinical and cost effectiveness.</p><p><strong>Review registration: </strong>PROSPERO database ( https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=351638 ).</p>\",\"PeriodicalId\":9002,\"journal\":{\"name\":\"BMC Emergency Medicine\",\"volume\":\"24 1\",\"pages\":\"189\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Emergency Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12873-024-01107-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EMERGENCY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Emergency Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12873-024-01107-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
Clinical prediction models for the management of blunt chest trauma in the emergency department: a systematic review.
Background: The aim of this systematic review was to investigate how clinical prediction models compare in terms of their methodological development, validation, and predictive capabilities, for patients with blunt chest trauma presenting to the Emergency Department.
Methods: A systematic review was conducted across databases from 1st Jan 2000 until 1st April 2024. Studies were categorised into three types of multivariable prediction research and data extracted regarding methodological issues and the predictive capabilities of each model. Risk of bias and applicability were assessed.
Results: 41 studies were included that discussed 22 different models. The most commonly observed study design was a single-centre, retrospective, chart review. The most widely externally validated clinical prediction models with moderate to good discrimination were the Thoracic Trauma Severity Score and the STUMBL Score.
Discussion: This review demonstrates that the predictive ability of some of the existing clinical prediction models is acceptable, but high risk of bias and lack of subsequent external validation limits the extensive application of the models. The Thoracic Trauma Severity Score and STUMBL Score demonstrate better predictive accuracy in both development and external validation studies than the other models, but require recalibration and / or update and evaluation of their clinical and cost effectiveness.
期刊介绍:
BMC Emergency Medicine is an open access, peer-reviewed journal that considers articles on all urgent and emergency aspects of medicine, in both practice and basic research. In addition, the journal covers aspects of disaster medicine and medicine in special locations, such as conflict areas and military medicine, together with articles concerning healthcare services in the emergency departments.