LDAGM:基于多视角异构网络的图卷积自动编码器和多层感知器预测 lncRNA 与疾病的关联。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Bing Zhang, Haoyu Wang, Chao Ma, Hai Huang, Zhou Fang, Jiaxing Qu
{"title":"LDAGM:基于多视角异构网络的图卷积自动编码器和多层感知器预测 lncRNA 与疾病的关联。","authors":"Bing Zhang, Haoyu Wang, Chao Ma, Hai Huang, Zhou Fang, Jiaxing Qu","doi":"10.1186/s12859-024-05950-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long non-coding RNAs (lncRNAs) can prevent, diagnose, and treat a variety of complex human diseases, and it is crucial to establish a method to efficiently predict lncRNA-disease associations.</p><p><strong>Results: </strong>In this paper, we propose a prediction method for the lncRNA-disease association relationship, named LDAGM, which is based on the Graph Convolutional Autoencoder and Multilayer Perceptron model. The method first extracts the functional similarity and Gaussian interaction profile kernel similarity of lncRNAs and miRNAs, as well as the semantic similarity and Gaussian interaction profile kernel similarity of diseases. It then constructs six homogeneous networks and deeply fuses them using a deep topology feature extraction method. The fused networks facilitate feature complementation and deep mining of the original association relationships, capturing the deep connections between nodes. Next, by combining the obtained deep topological features with the similarity network of lncRNA, disease, and miRNA interactions, we construct a multi-view heterogeneous network model. The Graph Convolutional Autoencoder is employed for nonlinear feature extraction. Finally, the extracted nonlinear features are combined with the deep topological features of the multi-view heterogeneous network to obtain the final feature representation of the lncRNA-disease pair. Prediction of the lncRNA-disease association relationship is performed using the Multilayer Perceptron model. To enhance the performance and stability of the Multilayer Perceptron model, we introduce a hidden layer called the aggregation layer in the Multilayer Perceptron model. Through a gate mechanism, it controls the flow of information between each hidden layer in the Multilayer Perceptron model, aiming to achieve optimal feature extraction from each hidden layer.</p><p><strong>Conclusions: </strong>Parameter analysis, ablation studies, and comparison experiments verified the effectiveness of this method, and case studies verified the accuracy of this method in predicting lncRNA-disease association relationships.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481433/pdf/","citationCount":"0","resultStr":"{\"title\":\"LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks.\",\"authors\":\"Bing Zhang, Haoyu Wang, Chao Ma, Hai Huang, Zhou Fang, Jiaxing Qu\",\"doi\":\"10.1186/s12859-024-05950-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Long non-coding RNAs (lncRNAs) can prevent, diagnose, and treat a variety of complex human diseases, and it is crucial to establish a method to efficiently predict lncRNA-disease associations.</p><p><strong>Results: </strong>In this paper, we propose a prediction method for the lncRNA-disease association relationship, named LDAGM, which is based on the Graph Convolutional Autoencoder and Multilayer Perceptron model. The method first extracts the functional similarity and Gaussian interaction profile kernel similarity of lncRNAs and miRNAs, as well as the semantic similarity and Gaussian interaction profile kernel similarity of diseases. It then constructs six homogeneous networks and deeply fuses them using a deep topology feature extraction method. The fused networks facilitate feature complementation and deep mining of the original association relationships, capturing the deep connections between nodes. Next, by combining the obtained deep topological features with the similarity network of lncRNA, disease, and miRNA interactions, we construct a multi-view heterogeneous network model. The Graph Convolutional Autoencoder is employed for nonlinear feature extraction. Finally, the extracted nonlinear features are combined with the deep topological features of the multi-view heterogeneous network to obtain the final feature representation of the lncRNA-disease pair. Prediction of the lncRNA-disease association relationship is performed using the Multilayer Perceptron model. To enhance the performance and stability of the Multilayer Perceptron model, we introduce a hidden layer called the aggregation layer in the Multilayer Perceptron model. Through a gate mechanism, it controls the flow of information between each hidden layer in the Multilayer Perceptron model, aiming to achieve optimal feature extraction from each hidden layer.</p><p><strong>Conclusions: </strong>Parameter analysis, ablation studies, and comparison experiments verified the effectiveness of this method, and case studies verified the accuracy of this method in predicting lncRNA-disease association relationships.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05950-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05950-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:长非编码RNA(long non-coding RNAs,lncRNAs)可以预防、诊断和治疗多种复杂的人类疾病,建立一种有效预测lncRNA-疾病关联的方法至关重要:本文提出了一种基于图卷积自动编码器和多层感知器模型的 lncRNA 与疾病关联关系预测方法,命名为 LDAGM。该方法首先提取了 lncRNA 和 miRNA 的功能相似性和高斯交互图谱核相似性,以及疾病的语义相似性和高斯交互图谱核相似性。然后,它构建了六个同质网络,并使用深度拓扑特征提取方法将它们深度融合。融合后的网络有助于对原始关联关系进行特征补充和深度挖掘,捕捉节点之间的深层联系。接下来,通过将获得的深度拓扑特征与 lncRNA、疾病和 miRNA 相互作用的相似性网络相结合,我们构建了一个多视角异构网络模型。图卷积自动编码器用于非线性特征提取。最后,将提取的非线性特征与多视角异构网络的深度拓扑特征相结合,得到 lncRNA-疾病配对的最终特征表示。使用多层感知器模型对 lncRNA 与疾病的关联关系进行预测。为了提高多层感知器模型的性能和稳定性,我们在多层感知器模型中引入了一个名为聚合层的隐藏层。通过门控机制,它可以控制多层感知器模型中各隐藏层之间的信息流,从而实现各隐藏层的最佳特征提取:参数分析、消融研究和对比实验验证了该方法的有效性,案例研究验证了该方法在预测 lncRNA 与疾病关联关系方面的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks.

Background: Long non-coding RNAs (lncRNAs) can prevent, diagnose, and treat a variety of complex human diseases, and it is crucial to establish a method to efficiently predict lncRNA-disease associations.

Results: In this paper, we propose a prediction method for the lncRNA-disease association relationship, named LDAGM, which is based on the Graph Convolutional Autoencoder and Multilayer Perceptron model. The method first extracts the functional similarity and Gaussian interaction profile kernel similarity of lncRNAs and miRNAs, as well as the semantic similarity and Gaussian interaction profile kernel similarity of diseases. It then constructs six homogeneous networks and deeply fuses them using a deep topology feature extraction method. The fused networks facilitate feature complementation and deep mining of the original association relationships, capturing the deep connections between nodes. Next, by combining the obtained deep topological features with the similarity network of lncRNA, disease, and miRNA interactions, we construct a multi-view heterogeneous network model. The Graph Convolutional Autoencoder is employed for nonlinear feature extraction. Finally, the extracted nonlinear features are combined with the deep topological features of the multi-view heterogeneous network to obtain the final feature representation of the lncRNA-disease pair. Prediction of the lncRNA-disease association relationship is performed using the Multilayer Perceptron model. To enhance the performance and stability of the Multilayer Perceptron model, we introduce a hidden layer called the aggregation layer in the Multilayer Perceptron model. Through a gate mechanism, it controls the flow of information between each hidden layer in the Multilayer Perceptron model, aiming to achieve optimal feature extraction from each hidden layer.

Conclusions: Parameter analysis, ablation studies, and comparison experiments verified the effectiveness of this method, and case studies verified the accuracy of this method in predicting lncRNA-disease association relationships.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信