上皮细胞膜蛋白 2 在癌症中的多方面作用:从生物标记物到治疗目标。

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Biomolecules & Therapeutics Pub Date : 2024-11-01 Epub Date: 2024-10-21 DOI:10.4062/biomolther.2024.168
Ji Yun Jang, Mi Kyung Park, Chang Hoon Lee, Ho Lee
{"title":"上皮细胞膜蛋白 2 在癌症中的多方面作用:从生物标记物到治疗目标。","authors":"Ji Yun Jang, Mi Kyung Park, Chang Hoon Lee, Ho Lee","doi":"10.4062/biomolther.2024.168","DOIUrl":null,"url":null,"abstract":"<p><p>Tetraspanin superfamily proteins not only facilitate the trafficking of specific proteins to distinct plasma membrane domains but also influence cell-to-cell and cell-extracellular matrix interactions. Among these proteins, Epithelial Membrane Protein 2 (EMP2), a member of the growth arrest-specific gene 3/peripheral myelin protein 22 (GAS3/PMP22) family, is known to affect key cellular processes. Recent studies have revealed that EMP2 modulates critical signaling pathways and interacts with adhesion molecules and growth factor receptors, underscoring its potential as a biomarker for cancer diagnosis and prognosis. These findings suggest that EMP2 expression patterns could provide valuable insights into tumorigenesis and metastasis. Moreover, EMP2 has emerged as a promising therapeutic target, with approaches aimed at inhibiting or modulating its activity showing potential to disrupt tumor growth and metastasis. This review provides a comprehensive overview of recent advances in understanding the multifaceted roles of EMP2 in cancer, with a focus on its underlying mechanisms and clinical significance.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"697-707"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535296/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Multifaceted Role of Epithelial Membrane Protein 2 in Cancer: from Biomarker to Therapeutic Target.\",\"authors\":\"Ji Yun Jang, Mi Kyung Park, Chang Hoon Lee, Ho Lee\",\"doi\":\"10.4062/biomolther.2024.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tetraspanin superfamily proteins not only facilitate the trafficking of specific proteins to distinct plasma membrane domains but also influence cell-to-cell and cell-extracellular matrix interactions. Among these proteins, Epithelial Membrane Protein 2 (EMP2), a member of the growth arrest-specific gene 3/peripheral myelin protein 22 (GAS3/PMP22) family, is known to affect key cellular processes. Recent studies have revealed that EMP2 modulates critical signaling pathways and interacts with adhesion molecules and growth factor receptors, underscoring its potential as a biomarker for cancer diagnosis and prognosis. These findings suggest that EMP2 expression patterns could provide valuable insights into tumorigenesis and metastasis. Moreover, EMP2 has emerged as a promising therapeutic target, with approaches aimed at inhibiting or modulating its activity showing potential to disrupt tumor growth and metastasis. This review provides a comprehensive overview of recent advances in understanding the multifaceted roles of EMP2 in cancer, with a focus on its underlying mechanisms and clinical significance.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"697-707\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2024.168\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.168","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

四跨蛋白超家族蛋白质不仅能促进特定蛋白质向不同质膜域的迁移,还能影响细胞与细胞之间以及细胞与细胞外基质之间的相互作用。在这些蛋白中,上皮细胞膜蛋白 2(EMP2)是生长停滞特异性基因 3/外周髓鞘蛋白 22(GAS3/PMP22)家族的成员,已知会影响关键的细胞过程。最近的研究发现,EMP2 可调节关键的信号通路,并与粘附分子和生长因子受体相互作用,这突显了它作为癌症诊断和预后生物标记物的潜力。这些研究结果表明,EMP2 的表达模式可为了解肿瘤发生和转移提供有价值的信息。此外,EMP2 已成为一个很有前景的治疗靶点,旨在抑制或调节其活性的方法显示出破坏肿瘤生长和转移的潜力。这篇综述全面概述了在了解 EMP2 在癌症中的多方面作用方面的最新进展,重点关注其潜在机制和临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Multifaceted Role of Epithelial Membrane Protein 2 in Cancer: from Biomarker to Therapeutic Target.

Tetraspanin superfamily proteins not only facilitate the trafficking of specific proteins to distinct plasma membrane domains but also influence cell-to-cell and cell-extracellular matrix interactions. Among these proteins, Epithelial Membrane Protein 2 (EMP2), a member of the growth arrest-specific gene 3/peripheral myelin protein 22 (GAS3/PMP22) family, is known to affect key cellular processes. Recent studies have revealed that EMP2 modulates critical signaling pathways and interacts with adhesion molecules and growth factor receptors, underscoring its potential as a biomarker for cancer diagnosis and prognosis. These findings suggest that EMP2 expression patterns could provide valuable insights into tumorigenesis and metastasis. Moreover, EMP2 has emerged as a promising therapeutic target, with approaches aimed at inhibiting or modulating its activity showing potential to disrupt tumor growth and metastasis. This review provides a comprehensive overview of recent advances in understanding the multifaceted roles of EMP2 in cancer, with a focus on its underlying mechanisms and clinical significance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信