Y B Eisma, S T van Vliet, A J Nederveen, J C F de Winter
{"title":"评估视觉刺激特性对稳态视觉诱发电位和瞳孔直径的影响","authors":"Y B Eisma, S T van Vliet, A J Nederveen, J C F de Winter","doi":"10.1088/2057-1976/ad865d","DOIUrl":null,"url":null,"abstract":"<p><p>Steady-State Visual Evoked Potentials (SSVEPs) are brain responses measurable via electroencephalography (EEG) in response to continuous visual stimulation at a constant frequency. SSVEPs have been instrumental in advancing our understanding of human vision and attention, as well as in the development of brain-computer interfaces (BCIs). Ongoing questions remain about which type of visual stimulus causes the most potent SSVEP response. The current study investigated the effects of color, size, and flicker frequency on the signal-to-noise ratio of SSVEPs, complemented by pupillary light reflex measurements obtained through an eye-tracker. Six participants were presented with visual stimuli that differed in terms of color (white, red, green), shape (circles, squares, triangles), size (10,000 to 30,000 pixels), flicker frequency (8 to 25 Hz), and grouping (one stimulus at a time versus four stimuli presented in a 2 × 2 matrix to simulate a BCI). The results indicated that larger stimuli elicited stronger SSVEP responses and more pronounced pupil constriction. Additionally, the results revealed an interaction between stimulus color and flicker frequency, with red being more effective at lower frequencies and white at higher frequencies. Future SSVEP research could focus on the recommended waveform, interactions between SSVEP and power grid frequency, a wider range of flicker frequencies, a larger sample of participants, and a systematic comparison of the information transfer obtained through SSVEPs, pupil diameter, and eye movements.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the influence of visual stimulus properties on steady-state visually evoked potentials and pupil diameter.\",\"authors\":\"Y B Eisma, S T van Vliet, A J Nederveen, J C F de Winter\",\"doi\":\"10.1088/2057-1976/ad865d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Steady-State Visual Evoked Potentials (SSVEPs) are brain responses measurable via electroencephalography (EEG) in response to continuous visual stimulation at a constant frequency. SSVEPs have been instrumental in advancing our understanding of human vision and attention, as well as in the development of brain-computer interfaces (BCIs). Ongoing questions remain about which type of visual stimulus causes the most potent SSVEP response. The current study investigated the effects of color, size, and flicker frequency on the signal-to-noise ratio of SSVEPs, complemented by pupillary light reflex measurements obtained through an eye-tracker. Six participants were presented with visual stimuli that differed in terms of color (white, red, green), shape (circles, squares, triangles), size (10,000 to 30,000 pixels), flicker frequency (8 to 25 Hz), and grouping (one stimulus at a time versus four stimuli presented in a 2 × 2 matrix to simulate a BCI). The results indicated that larger stimuli elicited stronger SSVEP responses and more pronounced pupil constriction. Additionally, the results revealed an interaction between stimulus color and flicker frequency, with red being more effective at lower frequencies and white at higher frequencies. Future SSVEP research could focus on the recommended waveform, interactions between SSVEP and power grid frequency, a wider range of flicker frequencies, a larger sample of participants, and a systematic comparison of the information transfer obtained through SSVEPs, pupil diameter, and eye movements.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad865d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad865d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Assessing the influence of visual stimulus properties on steady-state visually evoked potentials and pupil diameter.
Steady-State Visual Evoked Potentials (SSVEPs) are brain responses measurable via electroencephalography (EEG) in response to continuous visual stimulation at a constant frequency. SSVEPs have been instrumental in advancing our understanding of human vision and attention, as well as in the development of brain-computer interfaces (BCIs). Ongoing questions remain about which type of visual stimulus causes the most potent SSVEP response. The current study investigated the effects of color, size, and flicker frequency on the signal-to-noise ratio of SSVEPs, complemented by pupillary light reflex measurements obtained through an eye-tracker. Six participants were presented with visual stimuli that differed in terms of color (white, red, green), shape (circles, squares, triangles), size (10,000 to 30,000 pixels), flicker frequency (8 to 25 Hz), and grouping (one stimulus at a time versus four stimuli presented in a 2 × 2 matrix to simulate a BCI). The results indicated that larger stimuli elicited stronger SSVEP responses and more pronounced pupil constriction. Additionally, the results revealed an interaction between stimulus color and flicker frequency, with red being more effective at lower frequencies and white at higher frequencies. Future SSVEP research could focus on the recommended waveform, interactions between SSVEP and power grid frequency, a wider range of flicker frequencies, a larger sample of participants, and a systematic comparison of the information transfer obtained through SSVEPs, pupil diameter, and eye movements.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.