Jaganathan Lakshmanan, Vaitheesh L Jaganathan, Boachun Zhang, Grace Werner, Tyler S Allen, David J Schultz, Carolyn M Klinge, Brian G Harbrecht
{"title":"嫩椰子水对部分癌症细胞株的抗癌特性及代谢组学分析","authors":"Jaganathan Lakshmanan, Vaitheesh L Jaganathan, Boachun Zhang, Grace Werner, Tyler S Allen, David J Schultz, Carolyn M Klinge, Brian G Harbrecht","doi":"10.2174/0118715206327789241008162423","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains in bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined.</p><p><strong>Objective: </strong>In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity.</p><p><strong>Methodology: </strong>Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components.</p><p><strong>Results: </strong>TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells.</p><p><strong>Conclusion: </strong>TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water.\",\"authors\":\"Jaganathan Lakshmanan, Vaitheesh L Jaganathan, Boachun Zhang, Grace Werner, Tyler S Allen, David J Schultz, Carolyn M Klinge, Brian G Harbrecht\",\"doi\":\"10.2174/0118715206327789241008162423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains in bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined.</p><p><strong>Objective: </strong>In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity.</p><p><strong>Methodology: </strong>Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components.</p><p><strong>Results: </strong>TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells.</p><p><strong>Conclusion: </strong>TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206327789241008162423\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206327789241008162423","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water.
Background: Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains in bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined.
Objective: In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity.
Methodology: Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components.
Results: TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells.
Conclusion: TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.