Qian Shen, Cong Xiang, Kui Huang, Feng Xu, Fulin Zhao, Yongliang Han, Xiaojuan Liu, Yongmei Li
{"title":"基于 CT 的腮腺良恶性肿瘤术前瘤内和瘤周放射模型:一项双中心研究。","authors":"Qian Shen, Cong Xiang, Kui Huang, Feng Xu, Fulin Zhao, Yongliang Han, Xiaojuan Liu, Yongmei Li","doi":"10.62347/AXQW1100","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the ability of intra- and peritumoral radiomics based on three-phase computed tomography (CT) to distinguish between malignant and benign parotid tumors.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of data from 374 patients with parotid gland tumors, all confirmed by histopathology. A total of 321 patients from Center 1 (January 2014 to January 2023) were randomly divided into the training set and internal testing set at a ratio of 7:3, whereas 53 patients from Center 2 (January 2020 to June 2022) constituted the external testing set. CT images of both the tumor and surrounding areas (2 mm and 5 mm areas surrounding the tumor) were reviewed, and their radiomic features were extracted for the construction of different radiomic models. In addition, a combined clinical-radiomic model was developed using multivariate logistic regression analysis. The model's predictive performance was evaluated using decision curve analysis (DCA) and receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>Among the models evaluated, Tumor + External2 model demonstrated superior predictive performance. The areas under the curve (AUCs) of this model were 0.986 in the training set, 0.827 in the internal test set, and 0.749 in the external test set. For the clinical model, independent predictive factors included symptoms, boundaries, and lymph node swelling. The combined clinical-radiomic model achieved AUCs of 0.981, 0.842, and 0.749 in the three cohorts, outperforming both the Tumor model and the clinical model individually.</p><p><strong>Conclusion: </strong>The CT-based radiomic models incorporating intratumoral and peritumoral radiomic features can effectively distinguish malignant from benign parotid tumors, and the predictive accuracy is further improved by incorporating clinically independent predictors.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 9","pages":"4445-4458"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preoperative CT-based intra- and peri-tumoral radiomic models for differentiating benign and malignant tumors of the parotid gland: a two-center study.\",\"authors\":\"Qian Shen, Cong Xiang, Kui Huang, Feng Xu, Fulin Zhao, Yongliang Han, Xiaojuan Liu, Yongmei Li\",\"doi\":\"10.62347/AXQW1100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate the ability of intra- and peritumoral radiomics based on three-phase computed tomography (CT) to distinguish between malignant and benign parotid tumors.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of data from 374 patients with parotid gland tumors, all confirmed by histopathology. A total of 321 patients from Center 1 (January 2014 to January 2023) were randomly divided into the training set and internal testing set at a ratio of 7:3, whereas 53 patients from Center 2 (January 2020 to June 2022) constituted the external testing set. CT images of both the tumor and surrounding areas (2 mm and 5 mm areas surrounding the tumor) were reviewed, and their radiomic features were extracted for the construction of different radiomic models. In addition, a combined clinical-radiomic model was developed using multivariate logistic regression analysis. The model's predictive performance was evaluated using decision curve analysis (DCA) and receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>Among the models evaluated, Tumor + External2 model demonstrated superior predictive performance. The areas under the curve (AUCs) of this model were 0.986 in the training set, 0.827 in the internal test set, and 0.749 in the external test set. For the clinical model, independent predictive factors included symptoms, boundaries, and lymph node swelling. The combined clinical-radiomic model achieved AUCs of 0.981, 0.842, and 0.749 in the three cohorts, outperforming both the Tumor model and the clinical model individually.</p><p><strong>Conclusion: </strong>The CT-based radiomic models incorporating intratumoral and peritumoral radiomic features can effectively distinguish malignant from benign parotid tumors, and the predictive accuracy is further improved by incorporating clinically independent predictors.</p>\",\"PeriodicalId\":7437,\"journal\":{\"name\":\"American journal of cancer research\",\"volume\":\"14 9\",\"pages\":\"4445-4458\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.62347/AXQW1100\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/AXQW1100","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Preoperative CT-based intra- and peri-tumoral radiomic models for differentiating benign and malignant tumors of the parotid gland: a two-center study.
Objective: To investigate the ability of intra- and peritumoral radiomics based on three-phase computed tomography (CT) to distinguish between malignant and benign parotid tumors.
Methods: We conducted a retrospective analysis of data from 374 patients with parotid gland tumors, all confirmed by histopathology. A total of 321 patients from Center 1 (January 2014 to January 2023) were randomly divided into the training set and internal testing set at a ratio of 7:3, whereas 53 patients from Center 2 (January 2020 to June 2022) constituted the external testing set. CT images of both the tumor and surrounding areas (2 mm and 5 mm areas surrounding the tumor) were reviewed, and their radiomic features were extracted for the construction of different radiomic models. In addition, a combined clinical-radiomic model was developed using multivariate logistic regression analysis. The model's predictive performance was evaluated using decision curve analysis (DCA) and receiver operating characteristic (ROC) curves.
Results: Among the models evaluated, Tumor + External2 model demonstrated superior predictive performance. The areas under the curve (AUCs) of this model were 0.986 in the training set, 0.827 in the internal test set, and 0.749 in the external test set. For the clinical model, independent predictive factors included symptoms, boundaries, and lymph node swelling. The combined clinical-radiomic model achieved AUCs of 0.981, 0.842, and 0.749 in the three cohorts, outperforming both the Tumor model and the clinical model individually.
Conclusion: The CT-based radiomic models incorporating intratumoral and peritumoral radiomic features can effectively distinguish malignant from benign parotid tumors, and the predictive accuracy is further improved by incorporating clinically independent predictors.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.