Qi Zhang, Dong Sun, Ke Wang, Zhuang Ma, Ting Xiao, Jinsen Gao, Chunming Xu, Zhihua Xiao, Xinlong Ma
{"title":"化尘为光从废轮胎热解油中提取的分层多孔碳立方体在对称电容器中表现出很高的性能。","authors":"Qi Zhang, Dong Sun, Ke Wang, Zhuang Ma, Ting Xiao, Jinsen Gao, Chunming Xu, Zhihua Xiao, Xinlong Ma","doi":"10.1016/j.jcis.2024.10.065","DOIUrl":null,"url":null,"abstract":"<p><p>Fabricating suitable porous carbon materials that are simultaneously applied in various electrochemical energy storage (EES) systems including supercapacitors (SCs) and lithium-ion capacitors (LICs) has an important significance in meeting the increasing demands in high energy density, high power density along with ultra-long life. Herein, cubic hierarchical porous carbon (CHPC) with abundant micro-mesoporous structures and moderate S, N co-doped atoms has been rationally designed by using MgO cubes as the templates and waste tire pyrolysis oil (WTPO) as carbon source and dopant. Attributed to the unique microstructures, the CHPC materials have been successfully utilized in different EES systems. In the aqueous electrolyte system, the assembled CHPC-2//CHPC-2 with 2 mg cm<sup>-2</sup> delivered high specific capacitance of 199.0 at 1 A/g, along with 98.5 % capacity retention rate for 20,000 cycles at 6 A/g. Even at high mass loading of 12 mg cm<sup>-2</sup>, CHPC-12//CHPC-12 still can deliver high gravimetric and areal capacitances of 187.0 F g<sup>-1</sup> and 2.24 F cm<sup>-2</sup> at 10 A/g, showing an excellent high-loading performance. Even under extreme conditions of -40 and 60 °C, the assembled SCs still can deliver an ultrahigh capacity retention rate of 97.9 % and 100 % at 10 A/g for 2000 and 8000 cycles, respectively. In addition, the symmetric CHPC//CHPC LICs also have been assembled and displayed a maximal energy density of 133.5 Wh Kg<sup>-1</sup> at 1178.2 W Kg<sup>-1</sup>. This work provides new insight into the high-value utilization of WTPO for prepared porous carbon with excellent electrochemical performance in various EES systems.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"679 Pt A","pages":"1219-1230"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turn the dust into glory: Hierarchical porous carbon cubes derived from waste tire pyrolysis oil exhibits high capability in symmetric capacitors.\",\"authors\":\"Qi Zhang, Dong Sun, Ke Wang, Zhuang Ma, Ting Xiao, Jinsen Gao, Chunming Xu, Zhihua Xiao, Xinlong Ma\",\"doi\":\"10.1016/j.jcis.2024.10.065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fabricating suitable porous carbon materials that are simultaneously applied in various electrochemical energy storage (EES) systems including supercapacitors (SCs) and lithium-ion capacitors (LICs) has an important significance in meeting the increasing demands in high energy density, high power density along with ultra-long life. Herein, cubic hierarchical porous carbon (CHPC) with abundant micro-mesoporous structures and moderate S, N co-doped atoms has been rationally designed by using MgO cubes as the templates and waste tire pyrolysis oil (WTPO) as carbon source and dopant. Attributed to the unique microstructures, the CHPC materials have been successfully utilized in different EES systems. In the aqueous electrolyte system, the assembled CHPC-2//CHPC-2 with 2 mg cm<sup>-2</sup> delivered high specific capacitance of 199.0 at 1 A/g, along with 98.5 % capacity retention rate for 20,000 cycles at 6 A/g. Even at high mass loading of 12 mg cm<sup>-2</sup>, CHPC-12//CHPC-12 still can deliver high gravimetric and areal capacitances of 187.0 F g<sup>-1</sup> and 2.24 F cm<sup>-2</sup> at 10 A/g, showing an excellent high-loading performance. Even under extreme conditions of -40 and 60 °C, the assembled SCs still can deliver an ultrahigh capacity retention rate of 97.9 % and 100 % at 10 A/g for 2000 and 8000 cycles, respectively. In addition, the symmetric CHPC//CHPC LICs also have been assembled and displayed a maximal energy density of 133.5 Wh Kg<sup>-1</sup> at 1178.2 W Kg<sup>-1</sup>. This work provides new insight into the high-value utilization of WTPO for prepared porous carbon with excellent electrochemical performance in various EES systems.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"679 Pt A\",\"pages\":\"1219-1230\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.10.065\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.10.065","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Turn the dust into glory: Hierarchical porous carbon cubes derived from waste tire pyrolysis oil exhibits high capability in symmetric capacitors.
Fabricating suitable porous carbon materials that are simultaneously applied in various electrochemical energy storage (EES) systems including supercapacitors (SCs) and lithium-ion capacitors (LICs) has an important significance in meeting the increasing demands in high energy density, high power density along with ultra-long life. Herein, cubic hierarchical porous carbon (CHPC) with abundant micro-mesoporous structures and moderate S, N co-doped atoms has been rationally designed by using MgO cubes as the templates and waste tire pyrolysis oil (WTPO) as carbon source and dopant. Attributed to the unique microstructures, the CHPC materials have been successfully utilized in different EES systems. In the aqueous electrolyte system, the assembled CHPC-2//CHPC-2 with 2 mg cm-2 delivered high specific capacitance of 199.0 at 1 A/g, along with 98.5 % capacity retention rate for 20,000 cycles at 6 A/g. Even at high mass loading of 12 mg cm-2, CHPC-12//CHPC-12 still can deliver high gravimetric and areal capacitances of 187.0 F g-1 and 2.24 F cm-2 at 10 A/g, showing an excellent high-loading performance. Even under extreme conditions of -40 and 60 °C, the assembled SCs still can deliver an ultrahigh capacity retention rate of 97.9 % and 100 % at 10 A/g for 2000 and 8000 cycles, respectively. In addition, the symmetric CHPC//CHPC LICs also have been assembled and displayed a maximal energy density of 133.5 Wh Kg-1 at 1178.2 W Kg-1. This work provides new insight into the high-value utilization of WTPO for prepared porous carbon with excellent electrochemical performance in various EES systems.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies