改善锂金属电池中原位聚合 1,3-dioxolane 电解质电化学特性的新策略。

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2025-02-01 Epub Date: 2024-10-12 DOI:10.1016/j.jcis.2024.10.024
Kang Xi, Yongdong Wang, Chengzhe Li, Yue Lei, Xin Xu, Lai Wei, Yunfang Gao
{"title":"改善锂金属电池中原位聚合 1,3-dioxolane 电解质电化学特性的新策略。","authors":"Kang Xi, Yongdong Wang, Chengzhe Li, Yue Lei, Xin Xu, Lai Wei, Yunfang Gao","doi":"10.1016/j.jcis.2024.10.024","DOIUrl":null,"url":null,"abstract":"<p><p>The application of solid-state electrolytes (SSEs) is anticipated to enhance the safety performance of lithium metal batteries (LMBs). However, the progress of SSEs has been hindered by the unstable electrode-electrolyte interfaces (EEIs). In this study, in-situ polymerization of 1,3-dioxolane (DOL) is employed for the preparation of SSEs, with the addition of tributyl borate (TBB) to establish stable EEIs, particularly under high-voltage conditions. On one hand, the addition of TBB promotes the dissociation of lithium salts and increases the concentration of free Li<sup>+</sup>, resulting in an increase in room temperature ionic conductivity to 1.13 × 10<sup>-4</sup> S cm<sup>-1</sup> and an improvement in the Li<sup>+</sup> transference number to 0.69 for the prepared poly-DOL electrolytes (PDE-TBB). Benefiting from the enhanced Li<sup>+</sup> transport, the Li/PDE-TBB/Li symmetric cell exhibits a cycle life exceeding 1,000 h with a low polarization voltage as low as 12 mV, and the Li/PDE-TBB/LiFePO<sub>4</sub> cell demonstrates exceptional cyclic stability over 800 cycles at 1C, with a coulombic efficiency exceeding 99.8 % and a capacity retention of 89.6 %. On the other hand, PDE-TBB exhibits improved stability under high-voltage conditions and the capacity to establish robust boron-rich cathode electrolyte interphase (CEI) on the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) surface, thereby enhancing the structural stability of cathode materials and ensuring exceptional cycling performance of Li/PDE-TBB/NCM811cell. This work presents a promising strategy for developing novel ether-based SSEs suitable for high-voltage lithium metal batteries.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"679 Pt A","pages":"1277-1287"},"PeriodicalIF":11.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries.\",\"authors\":\"Kang Xi, Yongdong Wang, Chengzhe Li, Yue Lei, Xin Xu, Lai Wei, Yunfang Gao\",\"doi\":\"10.1016/j.jcis.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of solid-state electrolytes (SSEs) is anticipated to enhance the safety performance of lithium metal batteries (LMBs). However, the progress of SSEs has been hindered by the unstable electrode-electrolyte interfaces (EEIs). In this study, in-situ polymerization of 1,3-dioxolane (DOL) is employed for the preparation of SSEs, with the addition of tributyl borate (TBB) to establish stable EEIs, particularly under high-voltage conditions. On one hand, the addition of TBB promotes the dissociation of lithium salts and increases the concentration of free Li<sup>+</sup>, resulting in an increase in room temperature ionic conductivity to 1.13 × 10<sup>-4</sup> S cm<sup>-1</sup> and an improvement in the Li<sup>+</sup> transference number to 0.69 for the prepared poly-DOL electrolytes (PDE-TBB). Benefiting from the enhanced Li<sup>+</sup> transport, the Li/PDE-TBB/Li symmetric cell exhibits a cycle life exceeding 1,000 h with a low polarization voltage as low as 12 mV, and the Li/PDE-TBB/LiFePO<sub>4</sub> cell demonstrates exceptional cyclic stability over 800 cycles at 1C, with a coulombic efficiency exceeding 99.8 % and a capacity retention of 89.6 %. On the other hand, PDE-TBB exhibits improved stability under high-voltage conditions and the capacity to establish robust boron-rich cathode electrolyte interphase (CEI) on the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) surface, thereby enhancing the structural stability of cathode materials and ensuring exceptional cycling performance of Li/PDE-TBB/NCM811cell. This work presents a promising strategy for developing novel ether-based SSEs suitable for high-voltage lithium metal batteries.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"679 Pt A\",\"pages\":\"1277-1287\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.10.024\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.10.024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

固态电解质(SSE)的应用有望提高锂金属电池(LMB)的安全性能。然而,不稳定的电极-电解质界面(EEIs)阻碍了固态电解质的发展。本研究采用 1,3-二氧戊环(DOL)原位聚合法制备 SSE,并添加硼酸三丁酯(TBB)以建立稳定的 EEIs,尤其是在高压条件下。一方面,TBB 的加入促进了锂盐的解离,增加了游离 Li+ 的浓度,从而使制备的聚 DOL 电解质(PDE-TBB)的室温离子电导率提高到 1.13 × 10-4 S cm-1,Li+ 转移数提高到 0.69。得益于增强的 Li+ 传输能力,Li/PDE-TBB/Li 对称电池在极化电压低至 12 mV 的情况下,循环寿命超过 1,000 h;Li/PDE-TBB/LiFePO4 电池在 1C 下循环 800 次以上,表现出卓越的循环稳定性,库仑效率超过 99.8%,容量保持率达到 89.6%。另一方面,PDE-TBB 在高电压条件下表现出更高的稳定性,并有能力在 LiNi0.8Co0.1Mn0.1O2 (NCM811) 表面建立稳固的富硼阴极电解质相(CEI),从而提高阴极材料的结构稳定性,确保 Li/PDE-TBB/NCM811 电池具有优异的循环性能。这项研究为开发适用于高电压锂金属电池的新型醚基 SSE 提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries.

The application of solid-state electrolytes (SSEs) is anticipated to enhance the safety performance of lithium metal batteries (LMBs). However, the progress of SSEs has been hindered by the unstable electrode-electrolyte interfaces (EEIs). In this study, in-situ polymerization of 1,3-dioxolane (DOL) is employed for the preparation of SSEs, with the addition of tributyl borate (TBB) to establish stable EEIs, particularly under high-voltage conditions. On one hand, the addition of TBB promotes the dissociation of lithium salts and increases the concentration of free Li+, resulting in an increase in room temperature ionic conductivity to 1.13 × 10-4 S cm-1 and an improvement in the Li+ transference number to 0.69 for the prepared poly-DOL electrolytes (PDE-TBB). Benefiting from the enhanced Li+ transport, the Li/PDE-TBB/Li symmetric cell exhibits a cycle life exceeding 1,000 h with a low polarization voltage as low as 12 mV, and the Li/PDE-TBB/LiFePO4 cell demonstrates exceptional cyclic stability over 800 cycles at 1C, with a coulombic efficiency exceeding 99.8 % and a capacity retention of 89.6 %. On the other hand, PDE-TBB exhibits improved stability under high-voltage conditions and the capacity to establish robust boron-rich cathode electrolyte interphase (CEI) on the LiNi0.8Co0.1Mn0.1O2 (NCM811) surface, thereby enhancing the structural stability of cathode materials and ensuring exceptional cycling performance of Li/PDE-TBB/NCM811cell. This work presents a promising strategy for developing novel ether-based SSEs suitable for high-voltage lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信