Alexandrine Daniel, Paul Savary, Jean-Christophe Foltête, Gilles Vuidel, Bruno Faivre, Stéphane Garnier, Aurélie Khimoun
{"title":"基于遗传距离的优化成本距离能带来什么?关于使用和滥用 ResistanceGA 的模拟研究。","authors":"Alexandrine Daniel, Paul Savary, Jean-Christophe Foltête, Gilles Vuidel, Bruno Faivre, Stéphane Garnier, Aurélie Khimoun","doi":"10.1111/1755-0998.14024","DOIUrl":null,"url":null,"abstract":"<p>Modelling population connectivity is central to biodiversity conservation and often relies on resistance surfaces reflecting multi-generational gene flow. ResistanceGA (RGA) is a common optimization framework for parameterizing these surfaces by maximizing the fit between genetic distances and cost distances using maximum likelihood population effect models. As the reliability of this framework has rarely been studied, we investigated the conditions maximizing its accuracy for both prediction and interpretation of landscape features' permeability. We ran demo-genetic simulations in contrasted landscapes for species with distinct dispersal capacities and specialization levels, using corresponding reference cost scenarios. We then optimized resistance surfaces from the simulated genetic distances using RGA. First, we evaluated whether RGA identified the drivers of the genetic patterns, that is, distinguished Isolation-by-Resistance (IBR) patterns from either Isolation-by-Distance or patterns unrelated to ecological distances. We then assessed RGA predictive performance using a cross-validation method, and its ability to recover the reference cost scenarios shaping genetic structure in simulations. IBR patterns were well detected and genetic distances were predicted with great accuracy. This performance depended on the strength of the genetic structuring, sampling design and landscape structure. Matching the scale of the genetic pattern by focusing on population pairs connected through gene flow and limiting overfitting through cross-validation further enhanced inference reliability. Yet, the optimized cost values often departed from the reference values, making their interpretation and extrapolation potentially dubious. While demonstrating the value of RGA for predictive modelling, we call for caution and provide additional guidance for its optimal use.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"25 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14024","citationCount":"0","resultStr":"{\"title\":\"What can optimized cost distances based on genetic distances offer? A simulation study on the use and misuse of ResistanceGA\",\"authors\":\"Alexandrine Daniel, Paul Savary, Jean-Christophe Foltête, Gilles Vuidel, Bruno Faivre, Stéphane Garnier, Aurélie Khimoun\",\"doi\":\"10.1111/1755-0998.14024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modelling population connectivity is central to biodiversity conservation and often relies on resistance surfaces reflecting multi-generational gene flow. ResistanceGA (RGA) is a common optimization framework for parameterizing these surfaces by maximizing the fit between genetic distances and cost distances using maximum likelihood population effect models. As the reliability of this framework has rarely been studied, we investigated the conditions maximizing its accuracy for both prediction and interpretation of landscape features' permeability. We ran demo-genetic simulations in contrasted landscapes for species with distinct dispersal capacities and specialization levels, using corresponding reference cost scenarios. We then optimized resistance surfaces from the simulated genetic distances using RGA. First, we evaluated whether RGA identified the drivers of the genetic patterns, that is, distinguished Isolation-by-Resistance (IBR) patterns from either Isolation-by-Distance or patterns unrelated to ecological distances. We then assessed RGA predictive performance using a cross-validation method, and its ability to recover the reference cost scenarios shaping genetic structure in simulations. IBR patterns were well detected and genetic distances were predicted with great accuracy. This performance depended on the strength of the genetic structuring, sampling design and landscape structure. Matching the scale of the genetic pattern by focusing on population pairs connected through gene flow and limiting overfitting through cross-validation further enhanced inference reliability. Yet, the optimized cost values often departed from the reference values, making their interpretation and extrapolation potentially dubious. While demonstrating the value of RGA for predictive modelling, we call for caution and provide additional guidance for its optimal use.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14024\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14024","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
What can optimized cost distances based on genetic distances offer? A simulation study on the use and misuse of ResistanceGA
Modelling population connectivity is central to biodiversity conservation and often relies on resistance surfaces reflecting multi-generational gene flow. ResistanceGA (RGA) is a common optimization framework for parameterizing these surfaces by maximizing the fit between genetic distances and cost distances using maximum likelihood population effect models. As the reliability of this framework has rarely been studied, we investigated the conditions maximizing its accuracy for both prediction and interpretation of landscape features' permeability. We ran demo-genetic simulations in contrasted landscapes for species with distinct dispersal capacities and specialization levels, using corresponding reference cost scenarios. We then optimized resistance surfaces from the simulated genetic distances using RGA. First, we evaluated whether RGA identified the drivers of the genetic patterns, that is, distinguished Isolation-by-Resistance (IBR) patterns from either Isolation-by-Distance or patterns unrelated to ecological distances. We then assessed RGA predictive performance using a cross-validation method, and its ability to recover the reference cost scenarios shaping genetic structure in simulations. IBR patterns were well detected and genetic distances were predicted with great accuracy. This performance depended on the strength of the genetic structuring, sampling design and landscape structure. Matching the scale of the genetic pattern by focusing on population pairs connected through gene flow and limiting overfitting through cross-validation further enhanced inference reliability. Yet, the optimized cost values often departed from the reference values, making their interpretation and extrapolation potentially dubious. While demonstrating the value of RGA for predictive modelling, we call for caution and provide additional guidance for its optimal use.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.