Paul D. N. Hebert, Robin Floyd, Saeideh Jafarpour, Sean W. J. Prosser
{"title":"对 10 万个样本进行条形码编码:在一次纳米孔运行中","authors":"Paul D. N. Hebert, Robin Floyd, Saeideh Jafarpour, Sean W. J. Prosser","doi":"10.1111/1755-0998.14028","DOIUrl":null,"url":null,"abstract":"<p>It is a global priority to better manage the biosphere, but action must be informed by comprehensive data on the abundance and distribution of species. The acquisition of such information is currently constrained by high costs. DNA barcoding can speed the registration of unknown animal species, the most diverse kingdom of eukaryotes, as the BIN system automates their recognition. However, inexpensive sequencing protocols are critical as the census of all animal species is likely to require the analysis of a billion or more specimens. Barcoding involves DNA extraction followed by PCR and sequencing with the last step dominating costs until 2017. By enabling the sequencing of highly multiplexed samples, the Sequel platforms from Pacific BioSciences slashed costs by 90%, but these instruments are only deployed in core facilities because of their expense. Sequencers from Oxford Nanopore Technologies provide an escape from high capital and service costs, but their low sequence fidelity has, until recently, constrained adoption. However, the improved performance of its latest flow cells (R10.4.1) erases this barrier. This study demonstrates that a MinION flow cell can characterise an amplicon pool derived from 100,000 specimens while a Flongle flow cell can process one derived from several thousand. At $0.01 per specimen, DNA sequencing is now the least expensive step in the barcode workflow.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"25 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14028","citationCount":"0","resultStr":"{\"title\":\"Barcode 100K Specimens: In a Single Nanopore Run\",\"authors\":\"Paul D. N. Hebert, Robin Floyd, Saeideh Jafarpour, Sean W. J. Prosser\",\"doi\":\"10.1111/1755-0998.14028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is a global priority to better manage the biosphere, but action must be informed by comprehensive data on the abundance and distribution of species. The acquisition of such information is currently constrained by high costs. DNA barcoding can speed the registration of unknown animal species, the most diverse kingdom of eukaryotes, as the BIN system automates their recognition. However, inexpensive sequencing protocols are critical as the census of all animal species is likely to require the analysis of a billion or more specimens. Barcoding involves DNA extraction followed by PCR and sequencing with the last step dominating costs until 2017. By enabling the sequencing of highly multiplexed samples, the Sequel platforms from Pacific BioSciences slashed costs by 90%, but these instruments are only deployed in core facilities because of their expense. Sequencers from Oxford Nanopore Technologies provide an escape from high capital and service costs, but their low sequence fidelity has, until recently, constrained adoption. However, the improved performance of its latest flow cells (R10.4.1) erases this barrier. This study demonstrates that a MinION flow cell can characterise an amplicon pool derived from 100,000 specimens while a Flongle flow cell can process one derived from several thousand. At $0.01 per specimen, DNA sequencing is now the least expensive step in the barcode workflow.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1755-0998.14028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14028\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14028","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
It is a global priority to better manage the biosphere, but action must be informed by comprehensive data on the abundance and distribution of species. The acquisition of such information is currently constrained by high costs. DNA barcoding can speed the registration of unknown animal species, the most diverse kingdom of eukaryotes, as the BIN system automates their recognition. However, inexpensive sequencing protocols are critical as the census of all animal species is likely to require the analysis of a billion or more specimens. Barcoding involves DNA extraction followed by PCR and sequencing with the last step dominating costs until 2017. By enabling the sequencing of highly multiplexed samples, the Sequel platforms from Pacific BioSciences slashed costs by 90%, but these instruments are only deployed in core facilities because of their expense. Sequencers from Oxford Nanopore Technologies provide an escape from high capital and service costs, but their low sequence fidelity has, until recently, constrained adoption. However, the improved performance of its latest flow cells (R10.4.1) erases this barrier. This study demonstrates that a MinION flow cell can characterise an amplicon pool derived from 100,000 specimens while a Flongle flow cell can process one derived from several thousand. At $0.01 per specimen, DNA sequencing is now the least expensive step in the barcode workflow.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.