{"title":"酪氨酸磷酸化在 PTP-PEST 中的作用","authors":"Sreevidya Thirumalai Srinivasan, Amrutha Manikandan, Narayanan Manoj, Madhulika Dixit, Satyavani Vemparala","doi":"10.1021/acs.jpcb.4c04047","DOIUrl":null,"url":null,"abstract":"<p><p>We study the influence of tyrosine phosphorylation on PTP-PEST, a cytosolic protein tyrosine phosphatase. Utilizing a combination of experimental data and computational modeling, specific tyrosine sites, notably, Y64 and Y88, are identified for potential phosphorylation. Phosphorylation at these sites affects loop dynamics near the catalytic site, altering interactions among key residues and modifying the size of the binding pocket. This, in turn, impacts substrate binding, as indicated by changes in the binding energy. Our findings provide insights into the structural and functional consequences of tyrosine phosphorylation on PTP-PEST, enhancing our understanding of its effects on substrate binding and catalytic conformation.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"10581-10592"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Tyrosine Phosphorylation in PTP-PEST.\",\"authors\":\"Sreevidya Thirumalai Srinivasan, Amrutha Manikandan, Narayanan Manoj, Madhulika Dixit, Satyavani Vemparala\",\"doi\":\"10.1021/acs.jpcb.4c04047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the influence of tyrosine phosphorylation on PTP-PEST, a cytosolic protein tyrosine phosphatase. Utilizing a combination of experimental data and computational modeling, specific tyrosine sites, notably, Y64 and Y88, are identified for potential phosphorylation. Phosphorylation at these sites affects loop dynamics near the catalytic site, altering interactions among key residues and modifying the size of the binding pocket. This, in turn, impacts substrate binding, as indicated by changes in the binding energy. Our findings provide insights into the structural and functional consequences of tyrosine phosphorylation on PTP-PEST, enhancing our understanding of its effects on substrate binding and catalytic conformation.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"10581-10592\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c04047\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04047","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
We study the influence of tyrosine phosphorylation on PTP-PEST, a cytosolic protein tyrosine phosphatase. Utilizing a combination of experimental data and computational modeling, specific tyrosine sites, notably, Y64 and Y88, are identified for potential phosphorylation. Phosphorylation at these sites affects loop dynamics near the catalytic site, altering interactions among key residues and modifying the size of the binding pocket. This, in turn, impacts substrate binding, as indicated by changes in the binding energy. Our findings provide insights into the structural and functional consequences of tyrosine phosphorylation on PTP-PEST, enhancing our understanding of its effects on substrate binding and catalytic conformation.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.