{"title":"外源性淀粉样蛋白纤维可导致神经退行性疾病蛋白的显著上调。","authors":"Xihua Liu, Wenzhe Jia, Yapeng Fang, Yiping Cao","doi":"10.1021/acschemneuro.4c00483","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are associated with the formation of amyloid fibrils. In familial cases, the mutant causative genes accentuate disease progression through overexpression or misfolding of amyloidogenic proteins. Besides, considerable amyloidosis cases arise from external factors, but their origin and mechanisms are not yet fully understood. Herein, we found that amyloid fibrils generated from egg and milk proteins, in addition to their nutritional effects to intestinal cells, can selectively reduce the viability of nervous cells as well as pancreatic islet cells. In contrast, soy protein amyloid fibrils lacked cytotoxicity to the aforementioned cells. This protein source and cell type-dependent cytotoxicity are demonstrated to be associated with the significant upregulation of amyloidogenic proteins. The finding was also confirmed by the vein injection of beta-lactoglobulin fibrils to mice, exhibiting the pronounced upregulations of amyloid beta<sub>1-42</sub> (Aβ<sub>1-42</sub>) and islet amyloid polypeptide in vivo. The study therefore provides insight into the health implications of exogenous amyloid fibrils.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"4284-4294"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous Amyloid Fibrils Can Cause Significant Upregulation of Neurodegenerative Disease Proteins.\",\"authors\":\"Xihua Liu, Wenzhe Jia, Yapeng Fang, Yiping Cao\",\"doi\":\"10.1021/acschemneuro.4c00483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are associated with the formation of amyloid fibrils. In familial cases, the mutant causative genes accentuate disease progression through overexpression or misfolding of amyloidogenic proteins. Besides, considerable amyloidosis cases arise from external factors, but their origin and mechanisms are not yet fully understood. Herein, we found that amyloid fibrils generated from egg and milk proteins, in addition to their nutritional effects to intestinal cells, can selectively reduce the viability of nervous cells as well as pancreatic islet cells. In contrast, soy protein amyloid fibrils lacked cytotoxicity to the aforementioned cells. This protein source and cell type-dependent cytotoxicity are demonstrated to be associated with the significant upregulation of amyloidogenic proteins. The finding was also confirmed by the vein injection of beta-lactoglobulin fibrils to mice, exhibiting the pronounced upregulations of amyloid beta<sub>1-42</sub> (Aβ<sub>1-42</sub>) and islet amyloid polypeptide in vivo. The study therefore provides insight into the health implications of exogenous amyloid fibrils.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"4284-4294\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00483\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Exogenous Amyloid Fibrils Can Cause Significant Upregulation of Neurodegenerative Disease Proteins.
Neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, are associated with the formation of amyloid fibrils. In familial cases, the mutant causative genes accentuate disease progression through overexpression or misfolding of amyloidogenic proteins. Besides, considerable amyloidosis cases arise from external factors, but their origin and mechanisms are not yet fully understood. Herein, we found that amyloid fibrils generated from egg and milk proteins, in addition to their nutritional effects to intestinal cells, can selectively reduce the viability of nervous cells as well as pancreatic islet cells. In contrast, soy protein amyloid fibrils lacked cytotoxicity to the aforementioned cells. This protein source and cell type-dependent cytotoxicity are demonstrated to be associated with the significant upregulation of amyloidogenic proteins. The finding was also confirmed by the vein injection of beta-lactoglobulin fibrils to mice, exhibiting the pronounced upregulations of amyloid beta1-42 (Aβ1-42) and islet amyloid polypeptide in vivo. The study therefore provides insight into the health implications of exogenous amyloid fibrils.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research