非旋转无电荷原始黑洞的轴向扰动演变

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Arnab Sarkar, Sabiruddin Molla, K. Rajesh Nayak
{"title":"非旋转无电荷原始黑洞的轴向扰动演变","authors":"Arnab Sarkar,&nbsp;Sabiruddin Molla,&nbsp;K. Rajesh Nayak","doi":"10.1007/s10714-024-03309-6","DOIUrl":null,"url":null,"abstract":"<div><p>We derive the equation governing the axial-perturbations in the space-time of a non-rotating uncharged primordial black hole (PBH), produced in early Universe, whose metric has been taken as the generalized McVittie metric. The generalized McVittie metric is a cosmological black hole metric, proposed by Faraoni and Jacques in 2007 (Phys. Rev. D 76:063510, 2007). This describes the space-time of a Schwarzschild black hole embedded in FLRW-Universe, while allowing its mass-change. Our derivation has basic similarities with the procedure of derivation of Chandrasekhar, for deriving the Regge-Wheeler equation for Schwarzschild metric (Chandrasekhar The Mathematical Theory of Black holes, Oxford University Press, New York, 1983); but it has some distinct differences with that due to the complexity and time-dependency of the generalized McVittie metric. We show that after applying some approximations which are very well valid in the early radiation-dominated Universe, the overall equation governing the axial perturbations can be separated into radial and angular parts, among which the radial part is the intended one, as the angular part is identical to the case of Schwarzschild metric as expected. We identify the potential from the Schrödinger-like format of the equation and draw some physical interpretation from it.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"56 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-024-03309-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Evolution of axial perturbations in a non-rotating uncharged primordial black hole\",\"authors\":\"Arnab Sarkar,&nbsp;Sabiruddin Molla,&nbsp;K. Rajesh Nayak\",\"doi\":\"10.1007/s10714-024-03309-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We derive the equation governing the axial-perturbations in the space-time of a non-rotating uncharged primordial black hole (PBH), produced in early Universe, whose metric has been taken as the generalized McVittie metric. The generalized McVittie metric is a cosmological black hole metric, proposed by Faraoni and Jacques in 2007 (Phys. Rev. D 76:063510, 2007). This describes the space-time of a Schwarzschild black hole embedded in FLRW-Universe, while allowing its mass-change. Our derivation has basic similarities with the procedure of derivation of Chandrasekhar, for deriving the Regge-Wheeler equation for Schwarzschild metric (Chandrasekhar The Mathematical Theory of Black holes, Oxford University Press, New York, 1983); but it has some distinct differences with that due to the complexity and time-dependency of the generalized McVittie metric. We show that after applying some approximations which are very well valid in the early radiation-dominated Universe, the overall equation governing the axial perturbations can be separated into radial and angular parts, among which the radial part is the intended one, as the angular part is identical to the case of Schwarzschild metric as expected. We identify the potential from the Schrödinger-like format of the equation and draw some physical interpretation from it.</p></div>\",\"PeriodicalId\":578,\"journal\":{\"name\":\"General Relativity and Gravitation\",\"volume\":\"56 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10714-024-03309-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General Relativity and Gravitation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10714-024-03309-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-024-03309-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了宇宙早期产生的非旋转无电荷原始黑洞(PBH)时空的轴向扰动方程,该黑洞的度量被认为是广义麦克维蒂度量。广义麦克维蒂度量是法拉奥尼和雅克于 2007 年提出的宇宙学黑洞度量(Phys. Rev. D 76:063510, 2007)。它描述了嵌入 FLRW 宇宙的施瓦兹柴尔德黑洞的时空,同时允许其质量变化。我们的推导与钱德拉塞卡(Chandrasekhar)推导施瓦兹柴尔德度量的雷格-韦勒方程(Chandrasekhar The Mathematical Theory of Black holes, Oxford University Press, New York, 1983)的过程基本相似;但由于广义麦克维蒂度量的复杂性和时间依赖性,我们的推导与钱德拉塞卡的推导有一些明显的不同。我们的研究表明,在应用了一些在早期辐射主导宇宙中非常有效的近似方法之后,支配轴向扰动的总方程可以被分成径向和角向两部分,其中径向部分是我们想要的部分,因为角向部分与预期的施瓦兹柴尔德公设情况相同。我们从类似薛定谔方程的格式中确定了势,并从中得出了一些物理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evolution of axial perturbations in a non-rotating uncharged primordial black hole

Evolution of axial perturbations in a non-rotating uncharged primordial black hole

We derive the equation governing the axial-perturbations in the space-time of a non-rotating uncharged primordial black hole (PBH), produced in early Universe, whose metric has been taken as the generalized McVittie metric. The generalized McVittie metric is a cosmological black hole metric, proposed by Faraoni and Jacques in 2007 (Phys. Rev. D 76:063510, 2007). This describes the space-time of a Schwarzschild black hole embedded in FLRW-Universe, while allowing its mass-change. Our derivation has basic similarities with the procedure of derivation of Chandrasekhar, for deriving the Regge-Wheeler equation for Schwarzschild metric (Chandrasekhar The Mathematical Theory of Black holes, Oxford University Press, New York, 1983); but it has some distinct differences with that due to the complexity and time-dependency of the generalized McVittie metric. We show that after applying some approximations which are very well valid in the early radiation-dominated Universe, the overall equation governing the axial perturbations can be separated into radial and angular parts, among which the radial part is the intended one, as the angular part is identical to the case of Schwarzschild metric as expected. We identify the potential from the Schrödinger-like format of the equation and draw some physical interpretation from it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信